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Abstract

Design techniques for static information are well understood, their descrip-

tions and discourse thorough and well-evolved. But these techniques fail when 

dynamic information is considered. There is a space of highly complex systems 

for which we lack deep understanding because few techniques exist for visu-

alization of data whose structure and content are continually changing. To 

approach these problems, this thesis introduces a visualization process titled 

Organic Information Design. The resulting systems employ simulated organic 

properties in an interactive, visually refined environment to glean qualitative 

facts from large bodies of quantitative data generated by dynamic information 

sources.
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1 Introduction

Design techniques for static information are well understood, their descrip-

tions and discourse thorough and well-evolved. These techniques fail, however, 

when dynamic information is considered. Dynamic information is continually 

changing data taken as input from one or many sources. Changes in the data 

can be alterations in values, or modifications to relationships within a data set. 

There is a space of highly complex systems for which we lack deep understand-

ing that could be made accessible through visualization. What does the world 

economy look like? How can the continuously changing structure of the inter-

net be represented? It’s nearly impossible to approach these questions because 

few techniques exist for visualizing dynamic information. The solutions in this 

area begin with simple representations–a picture that can be a basis for a 

mental model. More advanced solutions aspire to full predictability and more 

objective methods of analysis. 

There are multiple reasons for the lack of effective examples for the visualiza-

tion of dynamically changing structures and values. How can extremely large 

quantities of data be handled? What happens when the extents and bounds of a 

data set are unclear? How can a continually changing structure be represented? 

To approach these problems, this research introduces a process of creating 

dynamic visualizations called Organic Information Design. This process was devel-

oped through the study and analysis of decentralized and adaptive systems, 

in particular, the traits of simple organisms. The traits: structure, appearance, 

adaptation, metabolism, homeostasis, growth, responsiveness, movement and 

reproduction, all relate to a set of features that enable an organism to survive 

and respond to a complex and changing environment. By examining how these 

features make an organic system effective, insight is gained into how to design 

a visualization that responds to and synthesizes data in a similar manner. The 

result of the design process is an Organic Information Visualization, a system that 

augments the perception of qualitative features of dynamic data. 
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1.1 Qualitative Representations: Relying on Human Perception

Learning the qualitative features of a data set is the first step towards under-

standing it. The pursuit of qualitative representations is a practical matter, 

because it will be useless or impossible to consider individual quantities for 

very large, continuously changing data sets. Impossible because the mind is 

not capable of handling hundreds of thousands of individual quantities simul-

taneously. Or useless because only a small amount of the information will actu-

ally be useful, and time would be wasted in analyzing the unnecessary parts. 

Instead, the most important part is a picture that provides the context that will 

give meaning to specific quantitative values. The second chapter of this thesis 

describes relevant background on previous approaches.

Because of the accuracy and speed with which the human visual system works, 

graphic representations make it possible for large amounts of information to 

be displayed in a small space. A telling example is found Bertin’s Semiology of 

Graphics [Bertin, 83] and is reproduced in figure 1.1.1.

In this example, both maps describe varying sociographical data throughout 

France. On the left, numbers are used to represent values, and at the right, the 

numbers are depicted through changing densities in a pattern of dots. Unlike 

the image with the numbers, the graphic is immediately readable and quickly 

makes apparent the qualitative characteristics of the data: a dense area can be 

seen in the upper-left, with other sparser regions throughout, illuminating less 

significant values. By making a visual representation for the hundred or so 

values that construct the map, quickly discernible relationships of the numbers 

can be obtained.

1.1.1 comparison between two modes 
of representation for sociographic data.  
left: quantitative version using numbers 
to depict data . right: graphic version 
that relies on dots of changing density 
to depict relative differences
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1.2 An Approach to Depicting Complexity: Organic Systems

The third chapter of this thesis describes how properties from organic systems, 

such as growth, response to stimuli, and metabolism, provide a framework for 

thinking about visualizations capable of handling dynamic sources of informa-

tion. There is much to be learned from organic systems because even the 

simplest organisms deal with complicated stimuli and must adapt to a chang-

ing environment. Instead of environmental conditions, organic visualizations 

use data as stimuli, and their reactions are prescribed in a set of rules crafted 

by an information designer. 

A key feature of organic systems, even synthetic ones, are the psychological 

phenomena associated with their perception. In Vehicles: Experiments in Synthetic 

Psychology, Valentino Braitenberg elucidates this well:

Interest arises, rather, when we look at these machines or vehicles as if they were 
animals in a natural environment. We will be tempted, then, to use psychological 
language to describe their behavior. And yet we know very well that there is nothing 
in these vehicles that we have not put in ourselves. [Braitenberg, 84]

Braitenberg continues with a description of machines whose characteristics 

seem to evoke emotions or personality traits. A machine that moves away 

from an object seems to ‘dislike’ or ‘fear’ it. Another machine might move 

towards a similar object with much speed, appearing ‘aggressive’. Such a system 

can be extremely simple: Braitenberg’s formulas for the fearful and aggressive 

machines have just one sensor and one motor. These psychological metaphors 

can be an extremely powerful tool for constructing an organic visualization, 

particularly with regards to how they are read by the user, and providing a 

vernacular for their description.

Emergent characteristics, such as aggregation and coordination, also play an 

important role in an organic visualization. Interaction rules must be con-

structed such that behavioral features emerge (i.e. causing a visual clustering 

of related information). These emergent features often find psychological meta-

phors. For instance, some elements in the system may ‘like’ related elements. 

Others might disassociate themselves from a grouping, appearing primitively 

‘antisocial’. 
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1.3 The Organic Information Visualization as a Tool for Thought

Organic Information Design is concerned with augmenting one’s ability to pro-

cess large amounts of data. The fourth chapter of the thesis describes a set of 

experiments that are examples of visualizations implemented with simulated 

organic properties. They are a starting point for how people can begin thinking 

about very complicated systems of relationships in a data set. 

Complexity is a perceived quality that comes from the difficulty in understand-

ing or describing many layers of inter-related parts. An Organic Information 

Visualization provides a means for viewers to engage in an active deconstruc-

tion of a data set. The complexity is pulled apart through a combination of real-

time user interaction as well as control of the data set through modification of 

the rules used for representation.

A paper by Ben Shneidermann discusses “training and education by explora-

tion” [Shneidermann, 94] and the positive reactions users had with such sys-

tems. It states that “the enthusiasm users have for dynamic queries emanates 

from the sense of control they gain over the database.” This highlights the 

engaging quality of learning about a data set. The Shneidermann work is 

limited, however, because each visualization must be constructed by a program-

mer, who also determines the parameters and ranges used for the data. This 

problem suggests a model where the programming is simpler and accessible 

to the viewer. In this model, they can become more involved in the creation of 

representations with features most important to their goals.
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1.4 Summary of Contributions

This chapter exposes the need for a model of visualization capable of handling 

dynamically changing information in a flexible manner. The work described 

in this thesis makes four primary contributions in this area. Each part is delin-

eated as a chapter in the body of this thesis. 

Context and Definitions–the second chapter characterizes Organic Infor-

mation Design, based on a convergence of themes from visualization, 

art, information design, and computer science. The synthesis is placed in 

the context of previous projects in these respective fields.

Properties of Organic Systems–The third chapter describes how properties 

from organic systems, such as growth, response to stimuli, and metabo-

lism, provide background for a computational framework for visualiza-

tions capable of handling dynamic sources of information. 

Experiments in Organic Information Design–the fourth chapter explains a 

set of experiments that are examples of visualizations implemented 

with simulated organic properties. It considers the structures used to 

construct such a visualization and describes the software model behind 

them. In addition, it studies the process of creating such a visualization.

Analysis–the final chapter describes salient themes of the work, listing 

its successes and shortcomings. Most importantly, these themes point 

to future work and continued improvements to the initial model pre-

sented.
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2 Context and Definitions

Visualization as a sub-field of science, statistics, and graphics has only been 

recognized as its own entity since the mid- to late-80s. The depth of seminal 

work is in line with that of a young field, but finds its strength in background 

drawn from years of statistics and graphic design.

A succinct definition of Visualization is found in [Card et al., 99]

visualization–the use of computer-supported, interactive, visual representa-
tions of data to amplify cognition.

Visualization is concerned with non-abstract data sets, for example imagery 

from weather data or an animation describing the movement of a fluid. For this 

kind of data, representations or physical analogues already exist. 

information visualization–the use of computer-supported, interactive, 
visual representations of abstract data to amplify cognition.

Information Visualization, by contrast, is concerned with making an abstract 

set of information visible, usually in circumstances where no metaphor exists 

in the physical world. 

The previous two terms can be used as both a verb describing a process or 

a noun describing an outcome. In order to avoid this ambiguity, this thesis 

separates the roles by defining Organic Information Design as the process used 

to create an Organic Information Visualization. The latter expands on the defini-

tion of Information Visualization in several ways:

organic information visualization–a system that employs simulated 
organic properties in an interactive, visually refined environment to glean qualita-
tive facts from large bodies of quantitative data generated by dynamic information 
sources.

This chapter closely examines this definition, using five sections to relate each 

of the five parts of the definition to precedents in the fields of visualization, 
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art, information design, and computer science. A summary of the individual 

sections:

Simulated Organic Systems–the method being employed, systems of 

simple rules that result in a more complicated whole (e.g. cellular 

automata and decentralized models of programming)

Interactive Environments–the means with which a user can learn about 

a system of data through direct manipulation (dynamic queries, 

focus+context techniques, other advanced models of user interaction)

Visual Refinement–a priority is placed on craft and sensitivity to visual 

issues, which are too often overlooked in visualization or deemed less 

relevant and relegated to secondary consideration or worse

Qualitative Facts from Large Bodies of Quantitative Data–examples of exem-

plary work that does an effective job of creating a strong qualitative 

impression from a large amount of quantitative information

Dynamic Information Sources–a discussion of the apparent lack of visual-

ization work capable of handling dynamic information sources

An Organic Information Visualization is a synthesis of these five areas. By 

examining the successes and failures of previous projects in each area, the 

process is put in the context the issues that it addresses, and its goals and 

contributions are made clearer.
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2.1 Simulated Organic Systems

The predominant trait of organic systems is their decentralized, distributed 

structure. The structure can be highly complex due to the interactions of their 

simpler component parts. Later chapters describe how this type of complexity 

can be used to create visualizations by causing data to coalesce and organize 

into structures in a similar manner. Computational models such as cellular 

automata are decentralized, rule-based systems that have been used for all 

manner of simulation, from games demonstrating social phenomena to highly 

mathematical physics to primitive models of simple organisms. 

StarLogo–Decentralized, self-organizing systems were examined in Turtles, Ter-

mites, and Traffic Jams [Resnick, 94]. The text introduced StarLogo, an environ-

ment based on the Logo programming language. StarLogo’s purpose is the 

simulation of massively parallel microworlds, systems made up of thousands of 

actors interacting with one another and their environment. StarLogo builds 

on the simplicity of the Logo programming language [Logo Foundation, 99], 

enabling developers with a wide range of skill levels to experiment with such 

distributed phenomena as ant colonies, traffic jams, slime molds and forest 

fires. Unlike a more general purpose programming language, its tuned syntax 

makes it straightforward to model the behaviors and interactions of elements in 

a distributed system. Using such an environment, the user can experiment with 

the parameters of these systems, observing how changes affect the outcome 

of the simulation. It provides firsthand experience for how organization can 

emerge from component parts without the direction of a central coordinator.

Figure 2.1.1 is an example StarLogo program, a simulation of termites collecting 

wood chips and organizing them into piles. The termites act with complete 

independence of one another. Each termite moves about randomly, until it 

bumps into a wood chip, which it picks up and continues wandering. If it 

bumps into another wood chip, it will find a nearby empty space to set down 

the chip it was carrying. It then returns to wandering. Eventually, the chips will 

be collected into a single pile, as if the termites had worked together to act out 

this explicit goal. However, this ‘goal’ was never a part of the rules that made 
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up the program, but was instead emergent from the interaction of several entities 

(the termites) acting out the simple set of instructions. 

Emergence is an essential strength of decentralized systems. It means that a 

meaningful whole can be developed from the interactions of many elements 

acting on very simple rules. 

to setup
setc red
seth random 360 
jump random 200
end

to go
search-for-chip   ;; nd a wood chip and pick it up
nd-new-pile      ;; nd another wood chip
nd-empty-spot    ;; nd a place to put down wood chip
end

to search-for-chip
if pc = yellow    ;; if nd a wood chip...
 [stamp black     ;; remove wood chip from patch
  setc orange     ;; turn orange while carrying chip
  jump 20
  stop]
wiggle
search-for-chip
end

to nd-new-pile
if pc = yellow [stop]   ;; if nd a wood chip, stop
wiggle
nd-new-pile
end

to nd-empty-spot
if pc = black      ;; if nd a patch without a wood chip
 [stamp yellow     ;; put down wood chip in patch
  setc red         ;; set own color back to red
  get-away
  stop]
seth random 360
fd 1
nd-empty-spot
end

to get-away
seth random 360
jump 20
if pc = black [stop]
get-away
end

to wiggle
fd 1
rt random 50
lt random 50
end

t=1

t=5

t=25

t=50

t=100

t=350

2.1.1 termite simulation written in 
StarLogo, with pictures of the simula-
tion at increasing time steps
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Cellular Automata–The first theories on computation with decentralized systems 

trace back to John von Neumann in 1948, when he gave a lecture on the 

“General and Logical Theory of Automata.” Stanislaw Ulam later worked out 

these ideas and proposed that distributed systems could be modeled on a 

regular grid of ‘cells’, which updated itself according to a set of rules. The rules 

are local, meaning that the state of individual cells are affected only by a cell’s 

immediate neighbors in the grid. During the 1950s, Arthur Burks continued to 

extend von Neumann’s work  and coined the term cellular automaton. [Coveney 

& Highfield, 95]

In 1970, the field saw a resurgence when John Conway invented The Game of 

Life, a set of rules for a cellular automaton that simulated a kind of microworld. 

The simplicity of the four rules (chart 2.1.2) can be deceptive, because of the 

variety and depth of configurations that can be created. The figures at the right 

loneliness–a cell with less 
than 2 neighbors dies

overcrowding–a cell with 
more than 3 neighbors dies

reproduction–an empty cell 
with 3 neighbors comes to life

stasis–a cell with exactly 2 
neighbors continues unchanged

2.1.2 rules for Conway’s Life–in the 
examples, only the center element is 
affected by the rule
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depict examples of several possible configurations, including static, periodic 

and moving objects [examples from Flake, 98]. Using Conway’s Life, it is pos-

sible to create systems that regenerate and reproduce in a primitive manner. In 

addition the combination of stable, persistent structures; the ability to ‘count’ 

with periodic structures; and the ability to move information qualifies the 

system as Turing complete, meaning that it is possible to fully simulate the 

kind of computation done with today’s machines. 

Another notable kind of cellular automaton is a class known as lattice gases. 

These systems use a set of rules not unlike Conway’s to model complex fluid 

dynamics. Using a systems such as hpp and fhp, after [Hardy et al., 76]  

and [Frisch et al., 86] it is possible to accurately represent both macro and 

microscopic dynamics of particles which obey the Navier-Stokes equation 

[d’Humières et al., 87], the basis for most work in fluid dynamics. 

The image on the left shows a simulation of a sound wave propagating in air, 

built using hpp, a system which involves particles on a square lattice which 

interact using a very limited set of rules. The right-hand image is a simulation 

of a fluid mixing simulation using fhp-iii, a more advanced version of basic  

fhp rules. 

These examples show how a small number of rules can create a system that 

emulates full computation, or has considerable mathematical relevance such 

that a difficult equation like Navier-Stokes just ‘falls out’ through their use.

2.1.3 examples of simulating fluid 
dynamics using lattice gasses. at left, a 
sound wave propagating through a air; 
at right, the mixing of two fluids of dif-
ferent densities
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2.1.4 four structures that will remain 
unchanged unless affected by other ele-
ments

2.1.5 three sequences of periodic struc-
tures. the last frame of each sequence 
is the same as the first (i.e. for a 
3-frame sequence, there are two steps, 
the third frame is the beginning of the 
next sequence)

2.1.6 two sequences of moving ‘objects’ 
in life, a set of cells that ‘acts together’ 
to propel themselves as a group
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2.2 Interactive Environments

Interaction is an essential component of visualization, particularly for enabling 

the representation of much larger structures by relying on user interaction. The 

ability to show and hide elements of interest, or to zoom in to a particular 

area of interest for a more detailed view are capabilities unique to interactive 

interfaces. Along with number-crunching ability, interaction is the other half 

of the strength in relying on the assistance of a computer for the task of 

visualization. Much work has been done in creating software environments for 

interactively exploring large sets of data. These software tools support a kind of 

active viewing or detective work.

Dynamic Queries – in 1993, Shneidermann and his students at the University of 

Maryland first presented work associated with a well-formed model of direct 

manipulation [Shneidermann, 94]. The image on the left depicts an interface 

that allows the user to search for homes based on criteria such as price, number 

of bedrooms, and distance for one’s commute. Previously, when interacting 

with a database, a user would choose a set of criteria, then use that as a query 

to be sent to the database. Constructing this type of query requires a great deal 

of expertise, making it inaccessible to all but the most advanced user. After 

a delay for the query to process, the results of that query would be shown 

on the screen. Dynamic queries make several improvements to this model. 

2.2.1 Dynamic Home-Finder
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A low-latency database is instead used meaning that results can be updated 

immediately. Instead of a complex command language, queries are modified 

interactively through direct manipulation of sliders and other user interface 

widgets (removing the need for the technical expertise to construct queries). 

The screen is continually updated in response to changes made to the query 

parameters, even while the user is still moving the mouse to adjust sliders. For 

instance, one slider is used to set the maximum commuting distance. Continu-

ous manipulation of that slider allows the user to see how different settings will 

affect the number of homes that the user can choose from. Another control can 

set a range, allowing the user to determine a suitable span of prices to be paid, 

and interactively see how changes in this criteria affect the choices for a possible 

home.  Another application example (shown in the right-hand image) uses a 

similar system to examine a database of medical criteria related to cancer rates 

sorted geographically. 

Dynamic queries are a good example of what’s possible when employing the 

computer in exploratory data research, and the work came in tandem with a 

time when the machines being used in the research laboratories were becoming 

fast enough that such a system was plausible. It demonstrates the effectiveness 

of using the computer to rapidly prune through large amounts of information. 

It is difficult to argue with the basic concept of dynamic queries, it is such a 

simple idea that they are without a doubt extremely pervasive. Perhaps the most 

limiting factor not addressed in the work of  Shneidermann or his students is 

that the types of systems for which the queries are effective is limited by things 

that can be represented as a singular instance on-screen. In particular, they 

make heavy use of metaphors. For beginning users (perhaps the target audience 

for these applications) this might make sense. However, as mentioned earlier, 

simple metaphors are often lacking in information visualization, so the scope 

of their use can be quite limited. Most data will not have simple physical 

correlations (a map of a downtown area, a map of the United States) that make 

sense, the way they do in the examples shown here.
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Starfield Displays –closely related to the previous projects with dynamic queries 

work is the FilmFinder [Ahlberg & Shneidermann, 93], a project by Christo-

pher Ahlberg, at the time a student of Shneidermann’s. It relies on a widget 

called the Starfield Display, which enables applications with much larger data 

sets.

Having chosen to directly discretize axes (one-for-one mapping of an axis to a 

dimension of data), this piece is limited by the number of axes it can represent. 

This too quickly leads to a cluttered interface that attempts to support many 

axes, with both continuous (year) and discrete (genre) selections. 

Each axis is linearly spaced, evidenced by an apparent need for a logarithmic 

scaling on the year axis. It’s perhaps interesting to see the change of density 

in number of movies over the years, but the attraction seems fading, past the 

initial glance. As a result, the already cluttered interface suffers from poor use 

of space.

The representation used is primitive, using small blocks of highly saturated 

color for instances of data, a form fails to be evocative of the data being 

presented. The lack of care seems as though it could potentially distract from 

the data being represented. 

It is also unclear if the application (a film finder) is particularly relevant to how 

people would want to access this particular kind of data (movies). However, I 

believe the author’s intent was to explain an idea, which stands on its own in 

spite of the application.

2.2.2 FilmFinder by Christopher 
Ahlberg and Ben Shneidermann
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Table Lens – The Table Lens, reproduced in figure 2.2.3, is a system created 

by Ramana Rao and Stuart Card at Xerox PARC [Rao, 94]. It is an interface 

that allows the user to view multiple dimensions of data for easy sorting and 

visual correlation. A positionable lens provides the ability to locally zoom in to 

particular sections of data, based focus shifts by the user.

The concept of an adjustable lense providing focus+context is extremely useful. 

The general problem of zooming into a set of data is that all context is lost 

because the zoom moves everything out of the viewing area except the actual 

targeted area.

The shortcoming in this approach, however, is that it assumes that all of 

the data is equally relevant, requiring the user to spend much time weeding 

through the data set. The work of Axel Kilian, described in the next section, is 

an example of a significant improvement on this model. 

In addition, the reliance on a heavily quantitative view based on devices like 

bar charts shows how such devices break down when applied to large volumes 

of data. The strength of a bar chart is being able to compare a handful of quan-

tities against one another, and determine their relationships semi-explicitly 

through the use of its numeric scale. But here it is used as a pseudo-qualitative 

2.2.3 Table Lens implementation 
from Inxight software
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device, to show general features of the data. At best, it seems that the qualitative 

feature being represented has three states: higher than most, lower than most, 

or somewhere in the middle/ambiguous. An improvement would be a grouping 

of related features, a sliding scale that adjusted to show logical sets. In the 

example depicted, the low/medium/high distinction would only tell the user 

whether the home was in the one hundred thousand, three hundred thousand, 

or one million dollar range. More useful cost groupings at smaller increments 

(based on typical buyer ranges) could be marked on the scale, aiding in the 

process of weeding through the data.

Axel Kilian–Kilian’s thesis work is an in-depth study in the use of nonlinear 

space [Kilian, 2000] . His studies in architecture led him to an interest in how 

software unchained the designer from the spatial restrictions of the physical 

environment. He explores this theme through a number of smaller pieces, each 

playing with a related sub-theme of this idea.

One of his particularly successful sub-themes has to do with storing a kind of 

‘focus history’, based on the interactions of one or several users with a data 

set over time. The result is for multiple parts of the visual composition to 

maintain some of their prevalence even when not the primary focus. And when 

returning to previous focus locations, they are allowed to more quickly regain 

their previous focus state. This concept of residue from interaction over time is 

especially useful as he applies it to large sets of information. 

2.2.4 space-warping with interaction 
history by Axel Kilian. at left: structure 
only, at right: interaction model 
applied to a photographic map
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2.3 Visual Refinement

The following projects are examples where visual refinement has a significant 

positive impact on the outcome of the piece. In each of these pieces, iteration 

of the visual design was given high priority. A large amount of information 

visualization work seems to overlook the importance of a clear and elegant 

appearance as intrinsically linked to the usefulness of the system. There are 

many reasons why this is the case, and it likely has much to do with how a 

visualization is built. There is a wide gap in the quality of visual design for the 

printed page versus software interfaces.

The graphic design of software-based visualization appears to have consistently 

lower quality than that of printed materials.  Print design is often enacted by a 

graphic designer, and software is generally implemented by a programmer. For 

the print designer, tools exist to assist in the creation of highly detailed, well 

crafted pieces that were developed through heavy iteration. For the program-

mer, no such tools exist, so it is likely that it will be either 1) not important 

enough, as the visuals are often seen as a facade, and not functionally depen-

dent on the system, or 2) for the well-intentioned programmer, too hard to 

implement better visuals, and therefore not enough of a priority. 

The only way to address this issue is to start with a design environment where 

the visuals are intrinsically linked to the visualization itself. The user of this 

environment has full access to the parameters determining appearance, allow-

ing full control with which to iterate and modify it. In the past, this has been 

simulated by relying on the programmer to also be a designer,  or at least 

for a designer to work closely with a programmer. Neither of these models 

are very successful, because for one person to handle the combined process of 

design and programming using traditional tools becomes extremely tedious, 

and makes it difficult to execute in either role effectively. Closely matched teams 

of designers and programmers are problematic as well, because they require 

intensely coordinated efforts and single-mindedness of purpose and goals. 

The background presented here shows examples created through the tedious 

perserverance of designer-programmers or by teams of designers and program-

mers. Additional examples are also included that are not built computationally, 

as examples of possibilities for depicting complexity through a time-consum-

ing, brute force process. For the process of Organic Information Design, how-
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ever, the goal is for a single person to be able to act as designer and programmer 

as a combined role, but with some of the tedium of programming removed, 

through the use of simpler development languages than c/c++ or Java. In 

addition, with the positive aspects of the available aspects of software tools for 

design, most notably the ability to iterate on a solution quickly, incorporated. 

Financial Viewpoints–very elegantly designed work by designer-programmer Lisa 

Strausfeld [Strausfeld, 95] during her tenure with the Visible Language Work-

shop at the Media Lab. The piece depicts a large amount of multivariate data 

regarding securities markets. The project uses delicately crafted tables, bar 

charts, and graphs but combines them in a unique way. Employing three spatial 

dimensions, the tables and charts (implemented in two dimensional planes) 

intersect one another where relations exist. To show different relations, the 

planes are shifted and the tables automatically updated. It is a powerful exam-

ple of an effective synthesis of older models (charts and graphs) can be re-

synthesized in  a new way, based on what is possible in software.

The limitations of this work are closely related to its strengths. By relying on 

charts and graphs, this piece fails in the same way that they do, namely that 

the extent of the data being represented is limited by the linear space they 

are presented in, and the number of dimensions that can be expressed in the 

relations shown are limited to the 3-dimensional environment. 

2.3.1 Financial Viewpoints by Lisa 
Strausfeld, exploring quantitative data 
in three dimensional space
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This piece provides a telling example for the pitfalls of attempting to extend 

existing visual metaphors, and the reader will note that the experiments shown 

in Chapter 4 avoid these older models altogether. In addition, it becomes 

necessary, when presenting large amounts of data, to employ nonlinear spatial 

design.

Visual Thesaurus–an interactive visual ‘fly-through’ thesaurus. Mostly, this piece 

is a visual representation of a directed graph structure, a concept from first-year 

computer science. The designers and programmers at plumb have created an 

environment with an elegant appearance, which is rare for implementations of 

similar kinds of data structures.

Unfortunately, this piece has several shortcomings. First, it fails to move much 

beyond being a visual directed graph. As such, many other implementations of 

the same idea can be found (Another project called The Brain, and several others 

come to mind), each of them developed independently, but often considering 

themselves the first to have created the same ‘invention.’ As an improvement, 

the data in the graph could modify itself based on usage, or even visuals that 

were more intriguing than simple lines drawn between nodes. 

Second, the piece resorts to using a bit of extraneous movement in its represen-

tation, which would seem nice as an added touch, so long as it didn’t interfere 

with its use. However, the computation used to implement it causes the move-

ment to appear needlessly jumpy, making the piece mildly twitchy and erratic. 

It could be a simple problem of the implementation using second-order versus 

third-order equations to control movement. It’s also possible that an improved 

2.3.2 two modes in the Visual 
Thesaurus by plumbdesign
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mathematical integrator (see the discussion of Runge-Kutta in [Gershenfeld, 

99]) could aid in smoother dynamics, perhaps with less taxing computation. 

Taking care with movement is extremely important because it is capable of so 

much expressive power (see discussion in section 3.8).

Hyperbolic Geometry–non-Euclidian geometry has been something of a trend 

for information visualization for the past five years, following a handful of 

published papers surrounding the subject, most notably [Lamping & Rao, 94] 

from Xerox parc. Hyperbolic geometry is based on a space whose coordinates 

increase exponentially, rather than linearly. Therefore it is possible to condense 

a large number of nodes into a small space. The user interacts with the graph 

by shifting focus between different nodes in the system. When implemented 

well, it is possible for the user to maintain context as they voyage through the 

space, because most elements maintain their visibility. This geometry also has 

significant aesthetic appeal for many, as its warped and circular forms can be 

quite elegant.

2.3.3 Site Lens Studio, a software prod-
uct based on the hyperbolic geometry 
research at Xerox PARC
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Figure 2.3.3 shows an example of using hyperbolic geometry to explore the 

Kennedy family tree. Clicking a node will move it nearer to the center, and 

re-disburse the other nodes along the outer edges. The image is taken from a 

demonstration of the product Site Lens Studio, from Inxight Software, a company 

founded by many of the original researchers from parc. 

The Inxight demo is mildly confusing to use. When a new node is selected, 

there is a slight pause while the system is recalculating the geometry, then 

in a flicker, the new layout appears. Because there is no transition state, it 

is difficult to maintain context as focus shifts. An interpolation of positions, 

even if implemented in linear space due to the computational requirements of 

hyperbolic coordinates, could help this piece significantly. 

The piece also seems to suffer from a lack of attention to detail, perhaps relying 

too much on the uniqueness of the representation to overcome its distracting 

design problems with poor use of color, a confusing image in the corner that 

interferes with the composition of the graph layout, and a set of toolbar icons 

shoved into the corner that relate to features that could be handled better. The 

resulting visual clutter only adds to any clutter that might exist in the graph 

representation itself.

While most of the work in hyperbolic geometry has focused on 

two-dimensional (flat) space, Tamara Munzner’s work is a 

notable exception. Munzner is a researcher at Stanford 

University who is studying ways to lay out large 

directed graphs, most recently using hyperbolic 

geometry in 3-dimensional space. The resulting 

structures seem somehow related to Valence, one 

of the projects described in the Experiments 

chapter of this thesis. This is a fleeting connec-

tion, however. On closer look the implementa-

tions and outcomes are quite different from one 

another.

The thoroughly researched work uses an approach that 

makes an effective use of space–a particularly difficult prob-

lem when dealing with graph layout, compounded by 3D. The 

visual sophistication comes from the approach and algorithm used to build 

2.3.4 Graph generated with Tamara 
Munzner’s H3, software that employs 
hyperbolic geometries for representing 
large graphs in 3D hyperbolic space
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this piece. However the visual details could be improved significantly. The 

arrowheads used to indicate directionality call more attention to themselves 

than necessary, and the use of straight lines to reach points laid out in a 

hyperbolic space make the composition considerably noisy, In fact, it would be 

difficult to determine that this were in fact a three dimensional sphere if there 

weren’t an outline demarcating the boundary of the space. And without the 

queue to help describe the geometry being used to create the form, navigation 

would seem quite difficult.

Asymptote–an architecture firm in New York, led by Hani Rashid and Lise 

Anne Couture with a remarkably unique approach to information design, they 

employ high-end 3D graphics software to create elaborate information graph-

ics. The attractiveness of this work is hotly debated, and the highly-stylized 

structures that result are ostentatious without abandon, not just shying away 

from readability, but avoiding it aggressively. Their apparent lack of seriousness 

suggests that simple diagrams need not be simple or even boring, but that the 

same data can be presented in an extremely striking visual that may in fact be 

more memorable than the approaches to charts and diagrams that dominate 

post-Tufte graphic design. This is a useful notion to at least entertain while 

considering new approaches to information visualization. 

2.3.5 examples of diagrams by 
Asymptote, from [Wurman, 1999]
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2.4 Qualitative Facts from Large Bodies of Quantitative Data

Like the example from Bertin in the first chapter, the projects that follow all use 

uniquely effective approaches to create a qualitative visual narrative from a large 

amount of quantitative data. 

MarketMap–Martin Wattenberg’s MarketMap is a well-implemented approach 

to revealing qualitative trends in the stock market. The piece is sectioned into 

regions representing different sectors of the markets (i.e. agriculture, technol-

ogy). Within those regions, rectangular sections represent individual stocks, 

and are colored based on the performance of the stock. Upwards movement is 

shown in shades of green, downwards in red. A bad day in the markets reveals 

a screen that is bathed in red, an extremely strong depiction of the negative 

activity that evokes an immediate psychological reaction. It’s hard to argue with 

a representation that induces emotions from quantitative data.

Perhaps also impressive is that Wattenberg, who is Director of Research and 

Development at SmartMoney.com, was able to introduce a somewhat unortho-

dox visual representation, which is a stark contrast from the market graphing 

applets and charts used on related web sites. It’s a considerable divergence from 

the norm for a potentially conservative audience of financial advice-seekers on 

SmartMoney.com. 

2.4.1 SmartMoney’s MarketMap , 
by Martin Wattenberg
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Mark Lombardi–the late artist from New York who created highly structured, 

hand-drawn graphs of inter-relating parts called “narrative structures.” Lom-

bardi’s description follows:

...each consists of a network of lines and notations which are meant to convey a 
story, typically about a recent event of interest to me like the collapse of a large 
international bank, trading company or investment house. One of my goals is to 
map the interaction of political, social and economic forces in contemporary affairs.

Working from...published accounts, I begin each drawing by compiling large 
amounts of information about a specific bank...After a careful review of the litera-
ture I then distill the essential points into an assortment of notations and other brief 
statements of fact, out of which an image begins to emerge.

The final line is telling of how this work is a very raw example of using a large 

amount of data in a visual environment and relying on the emergent qualities 

of the individual visual parts to create an image that turns the individual parts 

into a flowing narrative, a clearer qualitative description than its component 

parts. It is commendable that this work was executed in such painstaking 

detail, and without computational help. 

2.4.2 one of Lombardi’s “narrative 
structures”, and a detail of the piece
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2.5 Dynamic Information Sources

Useful examples of visualization research done with dynamic information 

sources are somewhat sparse. Small examples exist, for instance Wattenberg’s 

MarketMap is an example of using a live stock feed as a dynamic data source. 

But a perusal of [Card et. al, 99] produces a disappointingly limited (as in, near 

zero) set of papers regarding research in this area. There are examples of using a 

‘current’ set of data (such as a file browser), but next to none that use a stream 

of data that is fed to a visualization.

It seems that the majority of visualization work is done offline, likely for 

three reasons. First, that the computational power required to synthesize large 

amounts of data make it prohibitive to execute these systems in real time 

in most instances. Second, that it is considerably more difficult to develop a 

visualization that can handle a live stream of data instead of a canned database 

or flat file. Third, the combination of these two factors creates an environment 

where it is simply not worth the additional difficulty of making a visualization 

dynamic. Organic Information Visualization begins with dynamic information 

sources as its basis, in order to address this lacking of research in this area.

The field of information visualization was born out of the need for methods to 

represent large data structures or many large numbers of data values. Examples 

of large data structures include hierarchical file systems (many documents and 

applications inside nested folders) or tree-shaped web sites (linkages on the 

scale of thousands of pages). Perhaps the most prevalent example of many data 

values is financial or economic data. 

Having developed solutions for the two areas, the notion of expressing many 

changing data values and change in large data structures had to be addressed. 

The two areas were pursued separately, because their combination was too 

complex. A common example of many changing data values is found in the 

many representations of the stock market, beginning with the stock ticker 

and later evolving to tools like the MarketMap. Few examples exist that cover 

changing structure in data. 

With primitive models for all four areas, a crossover is now occurring, as 

depicted in figure 2.5.1. The visualization community is beginning to address 

large data structures with many changing values (i.e. more advanced models 
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of economic markets), as well as many data values and their relation to a 

changing structure (i.e. tracking network traffic patterns). The next step comes 

with models that are capable of representing large numbers of changing values 

as members of a large changing structure–the next generation work addressed 

in this thesis.

many data 
values

large data 
structures

many changing 
data values

change in large 
data structures

many data values relating 
to as elements of a large 

changing structure

large data structures 
with many changing 

data values

visualization of many changing 
data values that are elements in 

a large, changing structure

birth of information 
visualization as a field

next generation currently 
represented in research

present day for field of 
information visualization

2.5.1 evolution of issues addressed by 
the field of information visualization
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3 Properties of Organic Systems

This chapter describes the properties of organisms, and begins a description 

in broad terms of how similar systems can be implemented computationally, 

when applied to information visualization. More specific details on this imple-

mentation are described in the fourth chapter, where a formalized mode of 

implementation is presented along with a set of experiments.

The sections in this chapter are based in part on a definition of life taken 

from [Villee et al., 89]. By learning how an organism uses these traits to cope 

with its environment, one can infer how a visualization might take on similar 

characteristics, as a kind of caricature organic system. The properties listed 

provide a basis for the necessary components of a primitive organic system. 

Each of these properties can be simulated by simple rules in a decentralized 

system. Nine such properties are considered:

Structure–aggregation of elements to form more complex structures

Appearance–visual expression of internal state

Metabolism–synthesis of nutrients for raw materials and fuel

Growth–an increase in either scale or amount of structure

Homeostasis–the maintenance of a balanced internal state

Responsiveness–reaction to stimuli and awareness of the environment

Adaptation–adjustments to survive in a changing environment

Movement–behavioral expression of internal state

Reproduction–the ability of entities to create others like itself

Individual entities in the simulated organic system, called nodes, interact in a 

visual environment based on a set of behavioral rules that are determined by 

the designer of the system. These behavioral rules map meanings determined 

by the designer, such as ‘importance’, to a property like appearance. Based on 
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its importance, the node can modify its appearance, for instance, making itself 

larger than other nodes in the environment. 

In spite of the simplicity of the individual rules, the combination of several 

such rules results in a sophisticated self-organizing system that can adapt to 

changing conditions presented by the data source. The notion of many simple 

elements combining to form a more complete whole finds precedents in fields 

from biology to economics. It is the basis for a decentralized world view, where 

complex behaviors emerge from a small set of simple rules. The resulting 

systems can express themselves meaningfully and organize without direction 

from a central leader. 
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3.1.1 nodes grouping based on shape

3.1 Structure

Organisms have specific organization–a cell is made up of organelles, small spe-

cialized structure that take care of various tasks within the cell. Specialization 

increases with tissues (such as muscle tissue) which are composed of many 

cells. Organs are structured out of tissue, and they perform a specific functional 

task as part of an organ system. The human digestive system is an example 

of an organ system. These organ systems make up the whole of a complex 

organism, through the aggregation of simple parts. 

As the levels of aggregation increase, so does the sophistication of the resulting 

structure. This phenomenon is not limited to organisms. The world economy 

is made up of many billions of parts, and its description could begin at many 

levels. One possibility is to start with individual people, each with his or her 

own interests, abilities and goals. These workers aggregate in the form of a 

company, which acquires an individual identity. A single company is often part 

of a conglomerate of companies joined together through mergers or acquisi-

tions. Next, these conglomerates have business relationships with one another, 

competing with other conglomerates internationally. In spite of the simplicity 

of the individual elements in the system, each level of aggregation creates meta-

elements that are more capable of survival in a competitive environment.

In a computational system, this type of self-structuring has several modes 

of implementation. A node in a simulation is given a basic awareness of its 

neighbors (neighbors being defined spatially). The left hand side of figure 3.1.1 

shows several nodes that have a single value–their shape. A single rule is added 

to the nodes in the simulation, telling them to move closer to nodes of with 

similar shape. The result after a few time steps is seen at the right hand side 

of the figure. 
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However, the viewer quickly notices that in spite of being closer to similar 

nodes than dissimilar ones, they are arranged in a haphazard, sometimes over-

lapping manner. In addition, these individual parts are not guaranteed to be 

in the direct vicinity of their relations. These problems can be addressed by 

the addition of two more rules. First, similar shapes should maintain a specific 

distance from their centroid–their average position in space. This rule causes 

the parts to group around a point, as seen at the right of figure 3.1.2. The 

final rule states that each node should maintain a minimum distance from its 

neighbors. This keeps nodes from overlapping one another, and produces the 

arrangement seen at the left of 3.1.2.

Several layers of such rules can be used to produce more sophisticated cluster-

ing and aggregation of parts. For instance, one might envisage a system that 

is based on nodes that have not only shape, but a size associated with them 

(figure 3.1.3). In addition to sorting by shape, another set of rules could organize 

the pieces based on their size, producing the result seen at the right of the 

figure. The more complicated ordering adds another layer to the hierarchy of 

the representation, not unlike the systems described in the earlier part of this 

section.

3.1.3 nodes grouping based on shape, 
and ordering themselves based on size, 
the result of a pair of rules

3.1.2 similar nodes grouping around a 
centroid, then adjusting their distances 
relative to one another
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3.2 Appearance

An organism’s appearance can express its current internal state. An animal’s hair 

standing on end indicates fright, or a heightened awareness due to a sense of 

danger. Likewise, organic information systems use appearance as the primary 

expressive element to indicate the changing state of a system of data.

An example of a computational rule for appearance would be a node that 

changes in size when it is addressed more than its neighbors (the progression 

in 3.2.1). 

In spite of the simplistic nature of such a rule, its results can be quite striking 

when applied across a large number of nodes (3.2.2), as individual parts call 

attention to themselves as they are briefly determined to be relevant.

3.2.1 a progression in appearance

3.2.2 a system of many nodes, and the 
impact of some nodes calling attention 
to themselves
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3.3 Metabolism

Metabolism is the set of chemical reactions that take place in an organism, 

relating to consumption of nutrients for raw materials and fuel. As part of 

cellular synthesis, the raw materials are used for building or repairing a cell. 

Through cellular respiration, nutrients for fuel are converted to energy to drive 

the synthesis as well as other activities of the cell such as muscle contractions 

or nerve impulses. This process is diagrammed in figure 3.3.1.

Each reaction is regulated by enzymes, which can control how and when reac-

tions are started, the extent or vigor of the reaction, and its duration.

In a computational medium, the basic blocks of data fed to the organic visual-

ization work like nutrients fed to the system. A set of rules determine whether 

these blocks of data are raw materials or fuel. Raw materials are used to build 

or modify structures. Fuel manipulates the attributes of individual elements. 

Additional rules can act as enzymes, determining when and to what degree the 

other metabolic rules should affect the system. 

3.3.1 metabolic process in an organism, 
after [Villee et al., 89]
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The rules of metabolization are at the heart of what drives the system, the basis 

for what will result in an appearance that is qualitatively ‘well fed’ or ‘sick’. 

Distinctions such as these are made by comparing the appearance of individual 

elements in a visualization against one another (see examples in figure 3.3.2), or 

by watching the overall behavior of the system over time. The overall behavior 

might also be compared against mental images of how the system has behaved 

in the past. Often this process is not an explicit one–it is a natural component 

of human perception to continually compare and mentally juxtapose. For this 

reason, the properties of metabolism and appearance are very closely linked. 

3.4 Growth

Growth in an organism refers to an increase in either the size or number of 

cells. Some organisms continue growing until they die (such as trees), others 

have a pre-determined cycle during which the majority of their growth takes 

place. 

For the computational medium, growth generally refers to changes in the 

underlying structure of the data coming from an information source. Figure 

3.4.1 depicts successive stages of growth in a system. New parts are being added 

while others are slowly being left unused. Along with growth comes atrophy, 

where individual cells might decrease in size or even die. This is a powerful 

concept, because it is essential to the ability of an organic visualization to 

handle changes in the structure of what is being represented. Atrophy allows 

3.4.1 depiction of growth before and 
after several steps

3.3.2 appearances for comparison, 
driven by metabolism
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elements to wither and die as they become no longer pertinent, without the 

input data having to explicitly describe when this should happen. Growth 

will create new structures to replace the old ones as necessary. The process of 

atrophy is slow and non-explicit. 

A balance of growth and atrophy is important because the presentation space 

will always be finite. There are both physical and cognitive limitations that 

affect the presentation space. It is physically limited by the resolution of the 

screen (or any other chosen output device). On the other hand, an infinitely 

large presentation space wouldn’t be useful because our cognitive abilities 

would not be able to handle a much larger space. Instead, atrophy can be used 

to limit the outer bounds of a visualization, and to weed out less useful parts 

that are no longer in use.

3.5 Homeostasis

Homeostasis is the collection of a set of mechanisms that maintain the bal-

anced internal state of an organism. Figure 3.5.1 depicts the regulation of body 

temperature in a human through homeostasis. The description that accompa-

nies the diagram [Villee et al., 89] follows:

An increase in body temperature above the normal range stimulates special cells in 
the brain to send messages to sweat glands and capillaries in the skin. Increased 
circulation of blood in the skin and increased sweating are mechanisms that help 
the body get rid of excess heat. When the body temperature falls below the normal 
range, blood vessels in the skin constrict so that less heat is carried to the body 
surface. Shivering, in which muscle contractions generate heat, may also occur. 

When applied to organic visualization, homeostasis has two modes of imple-

mentation. First, rules must be constructed so that they balance themselves, 

3.4.2 structure undergoing process of 
atrophy
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3.5.1 regulation of human body tem-
perature through homeostasis, after 
[Villee et al., 89]

not allowing values to run out of control which might cause the system to ‘blow 

up’. Second, additional rules can be added that maintain the internal balance 

between the actions of the original rules. For instance, a rule can be added that 

does not allow forces applied to a node to exceed a certain maximum. 
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3.6 Responsiveness

Organisms are capable of responding to all kinds of stimuli. A stimulus can be 

one of a variety of environmental changes, such as a change in temperature or 

a sound. The stimulus and response can be simple, complex, or some combina-

tion of the two. One example of a simple response is a single-celled organism 

that moves away from bright light. For the same stimulus, the pupil in a human 

eye responds in a complex manner, changing in size as part of a sophisticated 

system of exposure control. More complex stimuli are also possible. Several 

beams of light hitting the retina might form the image of a predator, created 

from the combination of many stimuli. The response to this image can be 

simple (flee) or complex (evade in some intelligent manner).

In an organic visualization, a large variety of stimulus-response relationships 

are possible. These relationships take the form of rules, which are connected to 

the entity that they represent. The rules fall into three general categories: 

Composition Rules–an entity might take as stimulus the fact that another entity 

has moved ‘too close’ to it in the composition space. Appropriate responses 

would be for the entity to retreat away from the approaching entity, or to exert a 

force against it in order to repel it like a spring. 

Data Rules–addition of new data (often meaning new nodes) to the environ-

ment often requires a response from the existing nodes. This response might 

3.6.1 elements repelling one another

3.6.2 resizing of elements (normaliza-
tion) in composition, based on a new 
maximum largest element
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take the form of a re-scaling based on new minimum or maximum values 

represented by the new data. Other similar statistical phenomena, such as a 

shift in the balance of the median value, could have similar effects. 

Interaction Rules–interaction devices (such as the mouse) can also be treated 

as stimuli. If a click of the mouse means ‘focus here’, then the system might 

reconfigure itself based on the new point of focus. For instance, a set of nodes 

could regroup relative to the position of the node that was clicked. This makes 

it easier to get more information about the connections from the selected node 

to its neighbors. Interaction rules become important because they provide the 

buffer for how the user manipulates a data set.

3.6.3 nodes responding to a mouse 
pointer stimulus. adjacent elements 
avoid the selected element.
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3.7 Adaptation

Adaptation allows organisms to survive in a multi-faceted, changing environ-

ment. Long-term adaptation is a process that takes place over generations through 

natural selection. Small mutations in an organism’s genetic code that result 

in a trait that helps an organism survive better than others like it 

accumulate over the years. For example, animals with longer fur are 

better able to survive in a cold climate, therefore making it more 

likely to reproduce, having children that share the same trait. 

Mutations that cause fur to be longer are an adaptation that 

helps the species of organism to evolve and survive. 

The image at the right is of a Surinam Toad (Pipa Pipa), a 

peculiar aquatic creature. It has evolved over many generations, 

increasing its ability to survive in the mud and murky water of 

South American rivers. Its eyes have adapted to their lack of use 

and are tiny spots on the animal’s skin. Tiny feelers, almost like hands 

themselves, augment the ends of its fingers and aid in the search for its 

food. As a protective measure, the birthing process has adapted such that the 

eggs of the female Pipa Pipa are placed on her back, and are enveloped in its 

skin until several months later, when the eggs hatch and fully developed baby 

toads emerge.

By contrast, short-term adaptation covers changes such as the strengthening of 

a set of muscles due to regular exercise. The muscles adapt by increasing in 

their ability to handle the repeated stress, each time requiring less effort to do 

the same task. Short-term adaptations are based on interwoven networks of 

stimulus-response mechanisms. 

Habituation is a second type of short-term adaptation. If a similar stimulus 

is presented many times, the response on each occasion will diminish as the 

system becomes habituated to the input. A shrill sound can call an animal to 

attention, but if such a sound occurs often, each response will be less immedi-

ate and less active.

3.7.1 the Surinam Toad, a prime 
example of a complicated set of 
adaptations for a unique environ-
ment.
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A more complex structure will yield an organism more able to cope with a wider 

variety of changes to its environment. This is due in part to the specialization 

that can occur within such a structure, where different parts are able to address 

more specific stimuli, resulting in the organism’s ability to relate to a wider 

range of stimuli as a whole.

For an organic visualization, short-term adaptation brings with it the ability for 

a visualization to stretch, allowing the representation to slowly shift based on 

new input. Through heavy use, a piece of structure may strengthen, only to later 

weaken as use becomes negligible. Similar to a muscle, a weak part that was 

once strong will more quickly return to its strengthened state.

Consider as an example, a bar graph that adapts to the information that it is 

presenting. If the data being ‘fed’ to the chart required a logarithmic scaling to 

be useful, the chart would slowly move to that model. This mode of behavior 

is necessary because a basic assumption of this work is that the parameters of 

the input stream may not be known, but yet the visualization needs to always 

reconfigure itself to make the most useful representation. 

Habituation is essential as an advanced kind of filter for an organic visualiza-

tion. If the incoming data stream presents the same information repeatedly, 

the usefulness of that piece of information is obviously diminished in value, so 

habituation gives the visualization a way to tune out the constant flow of the 

similarity. However, a rapid increase or decrease in the rate of that particular 

stimulus would cause de-habituation, and the item would once again call atten-

tion to itself through movement or a change in shape (depending on how the 

value was being represented). 

Long-term adaptation brings with it an entirely different set of criteria, and 

was studied only minimally for this research. This kind of adaptation occurs 

over generations, and it is easy to imagine a system where visualizations might 

be ‘bred’ for their effectiveness. A set of criteria, including features such as ‘clar-

ity of communication’ could be assigned to a representation, and the visualiza-

tion could be scored on these criteria, using human input for the subjective 
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decision-making and an algorithm for the parts that could be determined com-

putationally. For example, Figure 3.7.3 comes from a project called “Evolving 

Virtual Creatures” from Karl Sims [Sims, 94], where he bred simple creatures 

in software using adaptation, mutation and evolution. The creatures slowly 

learned how to move themselves, because the mutations started a few creatures 

moving, and the criteria for breeding was chosen based on ability for self-

locomotion–the fastest piece was able to reproduce and continue. The creatures 

even ‘learned’ loopholes in the constraint rules set in the software that simu-

lated them–allowing them to achieve artificially high scores until these rules 

were adjusted.

In general, this direction is covered by a wide body of research, most specifically 

including work in genetic algorithms, and should be seen as a separate area 

of study.

3.8 Movement

All living things move. Even plants have streaming motion known as cyclosis, 

allowing them to bend and reconfigure. Movement is important for how an 

organism is perceived–it’s the most basic test an observer uses to determine 

whether it is alive. 

In section 1.2 all of Braitenberg’s descriptions of psychological attributions 

given to machines were related to movement. Movement is the key indicator 

for what a being is ‘thinking’. It helps to describe feelings or intentionality. Of 

course these attributes are not always present in the system, because machines 

of this kind are not capable of having feelings or intentionality. Braitenberg’s 

3.7.3 from “Evolving Virtual 
Creatures” by Karl Sims, an 
example of simple creatures 
adapted through breeding over 
several generations.
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3.8.1. two of Braitenberg’s vehicles

diagram of two machines is reproduced in figure 3.8.1. The machines are 

equipped with pairs of light sensors and motors. The sensors cause the motors 

to turn quickly and move the machines at high speed when they are far away 

from light, and more slowly as they come closer. Both machines will seek out 

and approach the light source. The first vehicle seems to ‘like’ the light source. 

It is content to approach the light and never leave its vicinity. However, because 

of the crossed connections in the right-hand machine, it will wander from the 

light source at the last moment, keeping an eye out for other stimuli. 

In an organic visualization, movement is most often used to express a change 

in a set of relationships within a composition. The psychological attributions 

give an easily recognizable meaning to this occurrence. Movement is one of the 

most expressive dimensions available, by definition the dominating factor in 

temporal behavior. 

Smaller, less determinate movement can also be used for a particular element to 

call attention to itself. Because of the nature of how the human visual system 

has evolved, movement can immediately attract attention and control focus. 

3.8.2 a wiggling element in a composi-
tion can quickly call attention to itself.
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3.9 Reproduction

Only life begets new life. New organisms are born through reproductive pro-

cesses involving either a single parent that duplicates its genetic code, or two 

parents that produce a combined set of code, resulting in an organism with a 

unique hereditary blueprint–based on a mixture of traits from both parents.

Organic information systems can use reproduction as a model for how new 

data is added to the system, causing these new elements to ‘inherit’ characteris-

tics from similar predecessors or siblings that already exist in the composition. 

In this manner, the new data can be assimilated into the system as related 

elements. They will have more valid starting points than if new data were 

added with ‘blank slate’ status. A basic example is shown in figure 3.9.1, where 

a new ‘box’ element is added. Its traits (position and size) are a mixture of 

two ancestors in the composition. Strictly speaking, this is not reproduction 

because new data is not created by the visualization. Rather, the rules borrow 

from the concept of sexual reproduction to create a new element that inherits 

its characteristics from two ‘parents’.

A second method could use reproduction to selectively breed traits of the 

visualization itself so as to produce better visualizations. This concept is closely 

linked to the long-term adaptation described in Section 3.7. Such a study would 

require significantly tangential study with a set of goals from this thesis, and 

was not pursued.

3.9.1 a new element being added to 
a composition, based on a mixture of 
traits from two ancestors.
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4 Experiments in          
 Organic Information Design

This chapter describes examples of the process of Organic Information Design. 

It introduces a set of computational structures used to build the most basic 

elements of an Organic Information Visualization and a software engineering 

method for implementing such a system. Finally, two example implementa-

tions are presented and discussed.

4.1 Structures

Four elements were used to build structure in the Organic Information Visual-

ization experiments described in this chapter. Rules are written to be associated 

with each of these elements, based on the properties outlined in the previous 

chapter.

The model presented begins with nodes and branches, which are typical struc-

tures from the field of computer science. With these features, it is possible 

to accurately diagram a surprisingly large number of information structures. 

The structure could be hierarchical, connecting only mutually exclusive nodes. 

On the other hand, the branches could connect nodes in a haphazard manner, 

creating a complex network of linkages. 

An alternative approach to the data structures could use vectors, dictionaries, 

and matrices. Connections could be expressed as intersections in a matrix. 

Ordering of elements could be represented using vectors. Dictionaries could 

relate elements together using a lookup method for their relations. This model 

was not pursued because usual the matrix would be very sparse, and the dic-

tionary lookups computationally intensive.

For the model chosen, rules are associated with each of the data structures. 

The rules take the form of the properties listed in the previous chapter. Most 

data structures have at least an appearance rule, determining how they are 

represented in the visualization. 
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Node–the most basic element in the system. A single piece of data from the 

input is generally mapped to an individual node. Alternatively, creation of new 

nodes can be restricted to unique data, and a metabolism rule can increase their 

‘importance’ as similar data is found in the input stream.

Branch–a connection between two nodes. The interaction rules for branches 

often act on the nodes they connect, for example exerting a force of attraction to 

bring them closer together. The visual rules for branches are important as they 

illustrate relationships between basic elements of data.

Path–a history of steps taken between the nodes. This is important because 

if the system consisted of only nodes and branches, it would only exhibit 

structure. Paths give a structure additional meaning. Dynamic information 

sources often describe sets of relations such as usage patterns. Paths provide 

a way to build time and frequency based relations between the nodes and 

branches in the system.
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Actor–it is possible to have multiple paths, therefore it is necessary to differenti-

ate between the entities that travel along the paths. An actor is an individual 

that is manipulating or traversing through the data in some way.

4.2 Values

Sets of static or changing values can be associated with each of the structural 

components. So far, two kinds have been formalized. But there are many other 

kinds of values that could also be included.

Numeric–a static numerical value. This is often used for keeping track of overall 

tallies and increments. 

For example, a node might have a Numeric value associated with it called 

‘count’. A rule could be applied such that every time an equivalent piece of 

data appeared in the data source the count was incremented by one. This count 

might later be used by a movement rule that would cause a node to move to 

a different position in the composition based on its internal count, relative to 

other nearby nodes.

Integrator–a continuously changing value, perhaps the most common used in 

the system. Instead of fixed values, the Integrator is essential to the notion that 

these systems are in a state of flux. The systems exist within a continuous, 

rather than discrete, domain. Integrator values grow and decay rather than 
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increment and decrement. Rules can take the following actions with an Integra-

tor:

Set–Explicitly set the current value of the Integrator. Normally, this is 

only used to set an initial value for the Integrator.

Impulse–Adds a specified amount of force to the Integrator. Equivalent to 

incrementing a Numeric value, but executed in the continuous domain, 

i.e. the amount added attenuates over time.

Decay–The opposite of an impulse. This is a decrease in the continuous 

domain. Often used to atrophy values over time. 

Attract–Apply a force to move the Integrator towards a particular value. 

Instead of setting the Integrator to a particular value, a target value 

is set for the Integrator that it will reach over time. Enables smooth 

transitions if the target is changing.

Repel–The opposite of attract, moves the value of the Integrator away 

from a particular numeric value. If the value being avoided is greater, the 

Integrator is decreased further. If less, the Integrator is increased.

Update–This is used internally to update the Integrator’s current value 

on each time step, after calculating a new velocity based on the forces 

that have been applied to the Integrator by the rules that affect it. 

Reset–After each the current value is updated, the forces are cleared. New 

forces are added on each time step by re-applying the rules. 

Other values–a node can have many data types associated with it, aside from 

the Numeric and Integrator values that are affected by rules. Typical data types 

include strings (lists of characters for words and sentences) or pointers that 

provide connections to other related structures.
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4.3 Information Pipeline

The experiments are pipelined using the following set of steps.

Unstructured Data–begin with very generic, streaming data input. This could be 

raw data being read as it is added to a log file for a web site, or stream from 

a stock ticker.

Preprocessor Engine–this turns the unstructured data into something that falls 

into one of the four structural elements (node, branch, path, client). This is 

often a separate program which is implemented in an alternative programming 

language that is particularly good at dealing with text or binary data. In later 

experiments, the Perl programming language was used for this step.

Visualization Engine–the piece that generates what’s seen on the screen, and 

what the user is interacting with. This is the simulated organic system itself. 

It is where queries are done and filters happen. Often, for sake of speed, this 

part is developed in a lower level language like c/c++. This approach has its 

shortcomings, namely that the rules have to be built by a software developer. 

A discussion of an alternative approach can be found in section 5.7 of the next 

chapter.

4.3.1 the Information Pipeline, a soft-
ware engineering method to allow 
individual visualization components to 
be exchanged for new data sets or new 
representations
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4.4 Valence

How can word usage in a book be represented visually? “The Innocents 

Abroad” by Mark Twain is 200,000 words long, of which 15,000 words are 

unique. A bar chart containing this many elements would be nearly worthless. 

It would be too large to take in at a glance, or if shrunk to one’s field of view, 

too small to understand. A focus+context technique like the Table Lens could 

be used, but due to enormous disparities in word usage (of the 15,000 words, 

fully half are used only once) less than 25% of the data would be worthwhile 

at all, with the interesting features not even appearing until the top 5%. This 

would leave a large amount of space with low importance and the lens focusing 

on the same area for the majority of the time.

Trying to find an effective solution becomes problematic, as each technique 

brings to light new issues. Even if these issues could be overcome by using 

some statistics and a modified bar chart, it’s not clear that this would be a 

useful description of the data. There would be no concept of relationships 

between words. For instance, how can one tell what words appeared near one 

another in the text? How can changes in word usage throughout 

the book be expressed? Typical design methods like charts 

and graphs fail when applied to such a large data set, 

so new models are needed. 

Valence is a project that uses the properties 

of organic information visualization in an 

attempt to achieve a more telling repre-

sentation. Every unique word in the book 

becomes a node. Branches are assigned 

to connect words that are found adjacent 

one another in the text. A set of rules is 

applied, based on the properties from the 

third chapter. These rules are detailed in 

table 4.4.2.

The resulting program reads the book in a linear 

fashion, dynamically placing each word into three-

dimensional space. The words most frequently used 

make their way to the outer parts of the composition, so that 

4.4.1 Valence in use, reading “The 
Innocents Abroad” by Mark Twain
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they can be more easily seen. This leaves the less common words closer to the 

center. When two words are found adjacent to one another in the text, a line 

is drawn between them in the visualization. Each time these words are found 

adjacent to each other, the connecting line shortens, pulling the two words 

closer together in space.

This Organic Information Visualization continues to change over time as it 

responds to the data being fed to it. Instead of focusing on numeric specifics 

(i.e. the exact number of times a word appears), the piece provides a qualitative 

feel for perturbations in the data, in this case being the different types of words 

and language used throughout the book. This provides a qualitative slice into 

how the information is structured. On its own, the raw data might not be 

particularly useful. But when relationships between data points can be estab-

lished, and these relationships are expressed through movement and structural 

changes in the on-screen visuals, a more useful perspective is established.

node values
position (Integrator)
frequency (Numeric)
label (text of word, i.e. ‘potato’)

node rules

reproduction rule–new words are 
added to random position in space 
as new nodes

metabolism rule–additional instances 
of same node increments ‘fre-
quency’

appearance rule–represent self using 
‘label’ text

movement rule–compare ‘frequency’ 
to that of nearby nodes, if higher, 
add forces to ‘position’ to move 
self to outside of composition, and 
add negative forces to ‘position’ of 
neighbor, pushing it inwards

branch values
from, to (nodes being connected)

branch rules

reproduction rule–new branches are 
added to the composition

metabolism rule–additional instances 
of same branch applies forces to 
‘from’ and ‘to’ nodes to bring them 
closer together

appearance rule–represent self with 
a line (algorithm for shape of line 
determined in the rule as well)

4.4.2 table of rules used for the 
Valence visualization
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The individual movements of words coordinate into a symphony of small 

parts. For the viewer, focus shifts between the overall shape of the piece to 

anomalies that call attention to themselves through rapid movement or change 

in color. Related parts of the composition will group together in clusters, which 

is not explicitly stated in the movement rules, rather it is implied through the 

way the nodes interact with one another as they execute the interaction rules. 

Groups of relations begin to form which aid in the perception of the system.

The user interaction in visualization allows for changes in viewpoint. The 

viewer may zoom into the center of the space to look around, or rotate the 

piece to view other locations. Interaction in this case could be improved by 

allowing for two things. This could be improved through implementation of 

direct manipulation, i.e. allowing the user to grab a particular piece and move it 

around, dragging related entities along with it. Using the selection to determine 

context, it would also be possible to provide additional information that was 

relevant to the selected node and its relations. 

Changing the rules requires the software to be recompiled, which is a major 

drawback. Allowing the user to manipulate the rules being applied to indi-

vidual nodes in the system (even while the system was running), would be a 

significant aid for the user to better understand how the rules construct the 

representation. For instance, if the user could change the movement rules to 

make the least frequently used words make their way to the outside of the 

representation. Figure 4.4.4 depicts the effects of this change, when applied to 

the same data set.

4.4.3 looking inside the space through 
zooming and rotation
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The Visualization Engine was built using c++ and OpenGL. Using a language 

like Java instead of c++ would have reduced the time spent programming, 

and made it easier to implement features like modification of rules at runtime, 

but the speed of the resulting visualization would be inadequate on the target 

platform: a reasonably fast $2500 Intel pc with a $150 graphics accelerator.

Setting up this visualization using organic properties resulted in a versatile 

system that is capable of representing multiple types of data sets. The software 

was constructed with multiple parts, using the Pipeline process described in 

section 4.3. A modified figure 4.3.1 depicts the pipeline applied to this project 

in the diagram below. Because of this structure, it was possible to replace 

the Preprocessor Engine that feeds the book to the Visualization Engine, it is 

possible to use the Visualization Engine to represent other kinds of data.

4.4.4 after modifying the movement 
rules to push less frequent words to the 
outside of the composition

4.4.5 Information Pipeline when 
using the Valence Visualization Engine 
with a text interface
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Visualizing Web Traffic–By replacing the Preprocessor Engine, this visualization 

has also been applied to tracking usage history on a web site. Instead of words, 

individual web pages became the nodes of the system. This is an improvement 

over typical web usage reports, which are typically comprised of bar charts and 

less useful statistics. Instead of the obvious information like “80,000 people 

visited the home page” and “only 10,000 people visited the ‘projects’ page”, it 

builds a self-evolving map of how people were really using the site, regardless 

of how the site had been structured by its designer, or what changes that 

structure had undergone in the meantime. 

As seen at the right hand side of Figure 4.4.7, areas cluster 

together as individual nodes begin to bunch up according 

to the rules used. In the web site example, these relate 

to web pages that are often visited in succession. This 

is the natural grouping that arises as people travel 

along the same paths repeatedly. This kind of emer-

gent behavior is an important component of any dis-

tributed, reactive system. It is a very basic example of 

more complicated behavior that arises from the interac-

tions of the various (simple) rules used to construct the 

system. 

Visualizing User Input–another application of this system was less successful but 

makes an interesting point about some of the assumptions present in the set 

of rules used in the piece, and where they can break down. In an attempt to 

4.4.7 emergent clustering of web pages 
when Valence is applied to web site 
usage data

4.4.6 Information Pipeline when 
feeding web site usage data to the 
Valence Visualization Engine
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make an interactive version of this visualization, keyboard typing was used 

as input for the system. Individual letters (instead of words or web 

pages) were added to the space, with connections being made 

between letters that were typed in succession. 

This was an attempt to demonstrate Valence by leaving 

the production of data to the user. However, it turned 

out to be ineffective, because there was no motivation 

for the user to type anything but random letters. The 

result was usually a network of no more than 26 char-

acters, all interconnected in haphazard ways. Because 

the rules were constructed to deal with large volumes of 

nodes, this low number contributed to the degenerate form 

created by the visualization.

Because the data was almost completely irregular, the visualization 

produced a mess–little clustering, no nodes of increased importance dancing 

around the perimeter. It could be argued that this was a case that a randomized 

input signal produced, true to its qualitative nature, a randomized garbage-like 

representation, but that is insufficient. It is likely that a valid data set could be 

nearly as irregular as typing on the keyboard. Especially because even seemingly 

‘random’ typing on the keyboard will have some amount of correlation. i.e. 

higher likelihood of the use of characters appearing near the ‘home’ keys (s-d-f 

and j-k-l in particular). 

To resolve these issues, rules governing habituation to the input signal should 

be employed. The visualization would then be capable of adjusting itself so that 

it recognized when the home keys were seeing slightly heavier use. An Integra-

tor called ‘habituation’ could be used for each node, and a metabolization rule 

could impulse the Integrator each time the key associated with that node was 

pressed. In addition, a homeostasis rule would decay all habituation Integrator 

values on each time step. When the movement rules were applied (to determine 

what nodes should be pushed inwards and outwards) a node whose habitua-

tion value was high at that time would not be as forceful as a node whose 

habituation was lower.  This would leave other, less habituated values (the 

nodes representing keys other than s-d-f and j-k-l) to become more prominent, 

and allow for better tracking of changes in the input stream

4.4.8 degenerate form resulting from 
randomized input and very few nodes
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Appearance–a significant part of the design process was in pursuit of a set 

of visual rules for the system that would produce a useful, interesting, and 

readable form. The first appearance rules applied to Valence (shown in 4.4.9) 

were based on straight lines that connected nodes that moved about in three 

dimensional space. The space was bounded by a box, and a set of movement 

rules restricted the movements of the nodes so that they stayed within the area. 

This representation produced an enormous visual jumble. As seen on the left, 

the system starts out messy but not completely inaccessible. It deteriorates as 

it moves in time towards the right-hand image, however. Forces of the nodes 

that repel one another cause several nodes to stick to the interior walls of the 

boundary box.

Figure 4.4.10 shows three increasing time steps after applying an improved set 

of rules. In this example, the nodes attempt to group towards a center, with 

more ‘important’ nodes fighting their way to the front of the composition, 

changing their size just slightly as they did so. The change of scale enhances the 

feeling of perspective in this set of solutions, and introduces a nicer contrast 

between nodes of varying importance. 

4.4.9 initial representation

4.4.10 with new appearance rules, 
introducing more visual contrast
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Next, an attempt was made to introduce text into the system (figure 4.4.11 at 

the left) as well as creating a more constricted space, where the entire system 

could be viewable within the boundaries of the screen. Grouping of nodes 

around the midpoint in the left hand image is a positive point for the visualiza-

tion, but it is flawed in its use of multiple lines to depict individual trips 

along the same branch. The system would quickly become dominated by these 

spindly fibers, which failed to communicate an amount of detail that was 

congruous with the amount of attention they called to themselves.

The right hand image was an iteration that backed away from the use of 

multiple lines by employing a single straight line that thickened based on 

use. The resulting figure was unattractive and even more confusing than its 

predecessor, thus other alternatives were sought.

At this point I was uncomfortable with the use of text, because it seemed to fall 

into a common trap that exists when using text. It is easy for a user to quickly 

latch onto a line of text, people seem to find text familiar (in a potentially 

unfamiliar, abstract space) and stimulating (when executed in 3d). It was easy, 

then, for observers to disregard the remaining visuals and be content with 

just text, because it was more concrete than anything else in the composition. 

Because I wanted to create forms that were evocative of the data, without 

simply relying on text to narrate the data, I temporarily discontinued the use of 

text in an attempt to return to the considerations of visual form. 

4.4.11 initial attempt at using text
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The next set of visualizations took a new direction by playing with non-Euclid-

ian geometry. Using a spherical coordinate space allowed the representation 

to maintain better boundaries. The use of radial lines promised an elegant 

solution to the previous problems with the branches connecting nodes.

However, this solution had serious problems. While the resulting forms were 

quite graceful, they were also unreadable. The problem was that linear inter-

polation in a three dimensional spherical geometry system produces spirals, 

making it nearly impossible to track where branches led to, and creating much 

extraneous visual noise that distracted from the data.

The follow-up solution is shown in the right-hand image of figure 4.4.13. The 

method was to interpolate along the great circle, the widest arc that intersected 

the two points being connected. This was an improvement, but introduced new 

problems. The most important parts floated nicely on the outside, but the use 

of many concentric circles caused the visualization to become a visual ball of 

yarn, with internal data being almost completely obscured. The next step was 

to invert the great circles, producing the left-hand image of figure 4.4.13. This 

visual was very pointy, and gave much attention to the already obvious details 

of what parts were most important. However, it exposed the interior of the 

information space, which had been missing. 

4.4.12 using spherical coordinates
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A mixture of the two appearance algorithms produced a single set of rules 

that shared the positive aspects of both representations, while shedding the 

negative. This combined format was the algorithm used in the final rendition of 

this project. The images of 4.4.14 show a visualization of web traffic in Valence 

at various time steps. The rightmost image is what the piece looks like after the 

user zooms inside the space using the mouse.

4.4.13 too spikey, too round

4.4.14 just right
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4.5.1 several steps showing growth of 
the web site’s structure

4.5 Anemone

What does a web site’s structure look like? A site is made up of thousands of 

pages, all linked together in a tree-shaped structure. A ‘map’ of the structure can 

be drawn using illustration software, but the diagram quickly becomes tangled 

in anomalies because the site is not as hierarchical as would be expected. To 

further complicate matters, the contents of the site are continually changing. 

Web pages are added and removed daily, so by the time the map could be 

finished, it would already be inaccurate. How can these changes be represented 

visually? 

How can a connection be made between the site’s usage statistics and that 

structure? How can the paths that visitors take through the site be expressed? A 

number next to each page could keep track of the total number of visitors, but 

because the traffic patterns are continually changing, it becomes clear that the 

totals aren’t as useful as hoped. How can the day to day and month to month 

changes in these numbers be expressed? How can the movement between 

pages be represented, making it apparent that some areas are more closely 

related than others?

Anemone is a project that uses the process of Organic Information Design 

to make this set of problems more approachable. Data from the Aesthetics 

and Computation Group’s web site was used as input in the examples shown 

here. Rules for growth can govern the creation of new branches of structure 

within the site. Atrophy rules decay unused areas, eventually removing them. 

Individual web pages can call attention to themselves as they are visited more 

rapidly than others. A set of rules governing movement can group related areas.
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4.5.2 nodes attracting attention and 
declaring their importance through 
changes in thickness

Individual branches grow based on input from the data. As the Preprocessor 

Engine reads the usage log, a reproduction rule causes branches to grow when-

ever parts of the site are visited for the first time. This avoids the problem of 

having to keep track of what pages are added to or removed from the site. Using 

the usage data to create an implicit model of structure is a common theme in 

Organic Information Design.

To balance growth is the notion of ‘atrophy’. Branches associated with areas 

of the site that have not been visited will slowly wither away, causing them 

to visually thin out. Eventually the branches die, and are removed from the 

system. 

A movement rule keeps the individual nodes within a set distance from their 

parent node. A second rule maintains a distance between nodes and their 

neighbors, so that branches overlap as little as possible. The composition is 

brought to life through the interactions of the growth and movement rules. The 

figure moves about the screen in a hyper, erratic fashion as it creates the initial 

parts of the visualization. After some time, this growth reaches an equilibrium 

and the pseudo-organism ‘settles’. 

Nodes at the tip of each branch represent a web pages. As seen in figure 4.5.2, 

each time a user visits a page, its node in the visualization becomes slightly 

thicker. Nodes for pages that are visited often become very thick relative to 

other nodes. This can happen rapidly, as nodes attempt to ‘call attention’ to 

themselves.
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If several users visit a particular section of the site, that group of nodes will col-

lectively thicken, drawing attention to the group. An interesting phenomenon 

can be watched as it propagates back through the site structure. For example, 

many people may visit the site from a link referring to it in the Yahoo directory 

(www.yahoo.com). This traffic can be watched while it propagates outward  

from the linked page. 

In addition, the appearance of the nodes self-regulate. If a particular page is 

frequently and consistently visited, its associated node in the visualization will 

thicken, but only up to a certain threshold. Not much additional information 

is learned therefore there is no need to allow the node to grow to enormous 

proportions. This homeostasis rule causes the node to settle to a certain size 

until changes in its use occur.

The Anemone experiment looks at how structural information can be juxta-

posed with less structured usage patterns. Figure 4.5.4 is an image of Anemone 

with two layers. The top layer is the directory structure of the site (depicted 

with branches), determining a hierarchy for where individual web pages are 

located. The layer beneath represents the paths taken by users as they visit the 

site. 

The paths can follow the directory structure, which is closely related to the link 

structure, as in the case of the web site being visualized here. The paths can 

also have disparate jumps to various areas of the site. Looking at the two layers 

together show interesting trends in the paths that large quantities of users take 

through the site. For instance, a large number of paths can be seen that connect 

the home page of Professor Maeda into other areas of the site. This is because 

4.5.3 progress of thickening in a group 
of related nodes
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many external links point to his page. In addition, a large number of visitors 

arrive from search engines having queried for his name. 

User interaction with this visualization is important. The viewer can click a 

node to discover which web page it represents (figure 4.5.5). They can also 

move nodes around as a way to peek inside the data set and take a closer look 

at what’s happening. Nodes can be dragged about the screen, pinned down, and 

watched in relation to other parts of the structure.

The graphics in this project are two dimensional, unlike the previous project. I 

wanted to experiment with 2d because 3d doesn’t necessarily add an additional 

dimension, as some would believe. The human visual system doesn’t let us truly 

‘see through’ things, so if the output device is a flat surface, the viewer really 

only perceives 2d and occlusion. More advanced use of occlusion in this work 

is still being investigated.

4.5.4 the two layers of Anemone, 
juxtaposing structured hierarchy with 
nonlinear usage

4.5.5 user interaction, dragging nodes 
with the mouse
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Visualizing computation–Anemone has also been applied to the visualization of 

computational processes. Figure 4.5.6 is the coding/editing environment for 

Design By Numbers (dbn), a simple programming language developed by 

John Maeda to teach non-programmers (artists and designers in particular) 

about computation [Maeda, 99]. On the right-hand side is the editing area 

where a program is entered; on the left is the imaging area, controlled by a 

running dbn program. About a year ago, I completed a rewrite of the inner-

workings of dbn, which deal with how text written by the user is first parsed 

and then executed by an interpreter engine. Because this process is so opaque 

and rarely understood in common use, even by experienced programmers, I 

decided to develop a visualization of how this process takes place.

The concept of a parse tree is central to any programming language. A parser 

converts the program typed by the user into a tree-shaped structure. To run the 

program represented by the tree, the tree is traversed visiting the branches in a 

well-defined order, starting with the root of the tree.

The top layer of branching lines is the parse tree of the program typed by the 

user. After parsing this program, it is output to Anemone using a simple text-

based protocol. The branches have simple layout ‘intelligence’ and are aware 

of their neighbors. This causes them to avoid overlapping one another, and  

4.5.6 example of a simple mouse-
based program running in the DBN 
environment
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produces a concise layout. This process is about halfway finished at the left of 

figure 4.5.7.

The right-hand side of figure 4.5.7 shows the parse tree once it has neared an 

equilibrium state for its layout. A darker path is beginning to appear, illustrat-

ing the flow of the execution engine (interpreter) as it walks through the parse 

tree of the program code. Figure 4.5.8 shows a more advanced stage of this 

process, with an area of the program becoming very bright its use increases. 

This piece of code is inside the main loop of the simple mouse-based program 

in figure 4.5.6. The visual provides a impression of how a program is run. 

In addition, it provides insight into the process of how software is run by a 

machine. 

4.5.7 growth of the parse tree

4.5.8 the visualization after several 
execution cycles, the path of the inter-
preter has become very prevalent
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User interaction is the same as with the previous experiment that used the 

Anemone Visualization Engine with web site usage data. The user can click a 

particular node in the tree to see what it relates to in the program’s representa-

tion. This interaction is useful in the sense of making the piece more literal, and 

therefore slightly more accessible for users just learning the system. 

A more advanced system might allow user interaction to affect the program 

while it runs. By removing parts of the visualization, or directing the flow, the 

program could be modified in a more visual manner.
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5 Analysis

This section describes the successes and shortcomings of this thesis work, 

a taxonomy for reading and observation, guidelines for implementation, and 

several directions for future work, including a discussion of improvements to 

a design environment in which Organic Information Visualizations (oivs) can 

be built.

5.1 Successes

Qualitative representations–Organic Information Visualizations are effective qual-

itative representations. Developing immediate impressions from the first 

instant a user looks at a piece, or within a short time span, is extremely 

useful. The systems become useful tools for tracking instantaneous trends in 

dynamic information sources. Visualizations of such data sources can exist in 

the background, as an ambient component of one’s environment, and still be 

effective.

Exploratory visualization–The visualizations excel when applied to exploratory 

data visualization, as an interactive way to learn about a data set. The example 

in section 4.4 of trying to understand word usage in a large text explains this 

in further detail.

Demonstrative systems–Rather than giving specifics about the content that they 

represent, the visualization demonstrates it visually. The viewer is engaged in 

parsing of the display, mentally comparing the current state with previous 

states. This process is implicit, however, in the human perceptual system. The 

mind continually contrasts what is currently being seen against related, stored 

images. The strength is the speed and accuracy with which this can be done, 

especially without it being an explicit mental task. A weakness comes from 

only being able to be certain that these comparisons can apply to broad trends. 

Unless the viewer is more actively engaged, this ability won’t get much further.
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5.2 Shortcomings

It seems that oivs are potentially less useful for quantitative analysis. While it 

is possible to support a mixing of quantitative specifics into the representation 

(like the example shown in section 1.2), this has not been pursued to much 

depth. 

Addressing highly noisy or irregular data is another issue that could use further 

exploration and testing. The keyboard input example in section 4.4 is a simple 

explanation of a broader difficulty. Finding appropriate and repeatable ways 

to make oivs self-regulate to bring the useful features out of noisy data is 

potentially a very difficult problem.

Information lacking structure is a related area. Consider a stream of sampled 

sound data. It would require many components to construct a visualization 

that would do something useful with this data as input. This is entirely pos-

sible under the model of oiv, but tests in this area are far from substantive.

The use of oivs for prediction has not yet been explored. Although it is pos-

sible to construct a visualization out of neuron elements which would be 

capable of sophisticated prediction, it has not been fully examined in the 

context of information visualization.

5.3  Reading and Observation

This research points to multiple ways to read an abstract visualization and their 

relationship to current visual information processing theories.

1. Innate understanding–rely on one’s own graphical sensibilities, using Bertin’s 

model of an innate model of graphics based on charts, maps, etc. [Bertin, 83] 

Perhaps only a weak link to this work, as it pursues alternative representations 

that are not necessarily intuitive.

2. Comparing deviance–first determine what the ‘normal’ state looks like, and 

then watch how the changing data signal causes the visualization to deviate 

from that state. This is probably the closest model for the current set of experi-

ments. The normal state is continually updated as the visualization evolves in 

time.
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3. Comparing multiples–an interesting area of research would be comparing 

several versions of the same system, each with slightly different rules determin-

ing its organization and representation. By observing the relative differences 

between the iterations, deeper understanding can be gleaned. There are two 

ways this can be done. First, by looking at streams of data, and running them 

through the systems based on the same sets of rules. Second, by looking at the 

same data set and changing the rules used to display it. This method is related 

to the notion of small multiples, discussed in [Tufte, 90].

4. Information dissection–by doing queries within the rules to see what kinds 

of things are happening, the viewer can engage in a kind of detective work. 

Sometimes reading a data will be a difficult process that requires the viewer to 

take an active role in learning about the data. Information design is concerned 

with making data accessible, not dumbing it down or limiting it to what is 

instantly digestible. 

5.4 Guidelines for Rules

Having applied the Organic Information Design process to a set of experi-

ments, the following guidelines become apparent.

Structure–it is essential to construct these systems in ways that will cause the 

individual parts to aggregate together. The experiments presented used simple 

clustering and grouping, but did not use employ additional rules to govern the 

grouping of those first-level clusters. 

Appearance–these are complicated systems, and it is easy (and therefore tempt-

ing) to make them very beautiful in their complications. . This is a weak 

exercise, however, because one can take the simplest thing and make it need-

lessly complicated but beautiful. Ostentatious or wildly complex things can 

be interesting, if they’re done in the appropriate contexts and executed in a 

creative manner. But in general, it is more important to simplify for the sake 

of the user. 

Movement–it is important to avoid extraneous movement in the composition 

that is not related to the task at hand. Movement eye-catching and quickly 
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distracts the user. A visualization can entertain and hypnotize with movement, 

but the viewer loses touch with the content of the representation.

5.6 Randomness

There is a danger in employing any sort of randomness when representing 

a system, particularly in the kind of representations discussed in this thesis. 

Layered interrelationships can cause a small bit of randomness to propagate 

and amplify throughout the system. Initial experiments used a small amount 

of randomness to provide minor perturbations where needed. For instance, if 

two nodes were too close together or occupying the same space, a small amount 

of force would be applied to make them repel from one another. Unfortunately, 

this introduced an artificial kind of novelty that was not motivated in any way 

by characteristics found in the data set.

Running a visualization that contains randomness twice with the same set of 

data produces a slightly different result. As horrifying as this might sound to 

a stastician or scientist, it is not as inherently evil as it might seem. The very 

basic aspects of the qualitative impression (being the primary view pursued 

by the visualization) are preserved. It is not sufficient to be content with 

maintaining just this minimal part of the qualitative impression. Randomness 

is a significant issue that needs to be addressed. 

In later experiments, my goal was to remove randomness by using a (some-

times arbitrary) feature of the data to flip the coin of chance. This has the 

advantage of causing a visualization of the same data set (using the same set of 

rules and parameters) to produce equivalent and repeatable results. This is an 

improvement over the previous outcome, but is still imperfect. There is a kind 

of randomness in the decisions that the designer makes to remap some semi-

arbitrary feature to provide the ‘answer’ previously determined by a random 

number. This errs on the side of being overly deterministic and artificial with 

respect to the pieces themselves or the method of their representation.

More work needs to be done in determining a more ideal solution for this issue. 

oivs maintaining equivalent qualitative character, in spite of small amounts of 
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randomness, seems the correct direction. But determining where randomness 

is permissible, and to what degree, is a difficult task.

5.7 Platform and Programming Language

All of the experiments described in this document were built using c/c++ 

and OpenGL. This is not in any way the preferred language, as programming 

and tweaking a project built in c/c++ requires an edit-compile-test-terminate 

process that can be very tedious. It is far from effective as an environment to 

do any kind of sketching, tweaking, and iterating: all necessary components of 

a design process. 

On the other hand, c/c++ was the simplest model for me to use with maxi-

mum performance, as the implementation of systems involving many small 

interacting components are extremely performance-sensitive. The data being 

modeled is voluminous, and the behaviors applied to individual nodes are 

computationally intensive. A software developer could spend a great deal of 

time simply tweaking for speed and performance gains, but it would be time 

wasted, with regards to the current stage of this research. There are more press-

ing issues to be addressed.

Without regard for the performance issues, an improved environment would 

use an embedded interpreter, providing a means for modifying and updating 

the rules in real time and viewing the outcomes based on the changes. Manipu-

lation by simple programming then becomes part of the observation process. 

It’s a step away from how one toys with numbers in a spreadsheet to ‘do some 

figures’ or using a piece of software like MatLab to take a look at a data set 

or signal.

An additional improvement would be the replacement of c/c++ with a high-

level language in which data types have an inherent knowledge of their neigh-

bors and their relationship to them. Once this is in place, it’s simply a matter 

of building ways to manipulate those relationships, and combining that with 

a visual representation that expresses those relationships. Data structures like 

resizable lists, trees, and various flavors of graphs are well understood in com-
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puter science. They should be simple to use as data types but are often more 

difficult to deal with, more tedious than they should be, or simply more tedious 

than would be expected. 

5.8 Additional Future Research

In addition to an improved development environment and addressing the 

shortcomings of the current pieces, a number of content areas could have 

potentially interesting representations if built using the Organic Information 

Design process.

genomics–The human genome will be completely mapped within six 

months. A model for representing the 600 million elements will be needed, but 

more importantly, a method for relating these elements to gene expression.

economics–An economy is an extremely complex system involving many 

parts. Experiments that examined various aspects of such economies could 

prove interesting. For example, the interactions of corporations and conglomer-

ates across multiple industries, and how these affect one another and other 

parts of the economy.

audio processing–Understanding less structured data, or using organic 

properties to build structure out of a generic signal could provide valuable 

insights in how to improve the process of Organic Information Design.

complex adaptive systems–How do complex systems of rush hour traffic 

resolve themselves? Simulations with large numbers of actors and variables 

such as these point to the application of Organic Information Design to a large 

body of research.

game theory–Visualization of the rules involved in game theory and their 

relationship to how a game is actually played could help bridge understanding 

in this area.

software and computer architectures–During the course of this 

work, several small attempts were made at developing representations of vari-

ous computational processes. This work could be expanded further, with exper-
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iments that attempt to visualize more advanced software projects, or an entire 

operating system.
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