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Abstract
The ability to collect, store, and manage data is increasing quickly, but 
our ability to understand it remains constant. In an attempt to gain 
better understanding of data, fi elds such as information visualization, 
data mining and graphic design are employed, each solving an isolated 
part of the specifi c problem, but failing in a broader sense: there are 
too many unsolved problems in the visualization of complex data. As a 
solution, this dissertation proposes that the individual fi elds be brought 
together as part of a singular process titled Computational Information 
Design. 

This dissertation fi rst examines the individual pedagogies of design, 
information, and computation with a focus on how they support one 
another as parts of a combined methodology for the exploration, 
analysis, and representation of complex data. Next, in order to make the 
process accessible to a wider audience, a tool is introduced to simplify 
the computational process for beginners, and can be used as a sketch-
ing platform by more advanced users. Finally, a series of examples show 
how the methodology and tool can be used to address a range of data 
problems, in particular, the human genome.
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1 Introduction

Biology has rapidly become a data-rich science, where the amount of 
data collected can outpace the speed with which it can be analyzed and 
subsequently understood. Sequencing projects have made available 
billions of letters of genetic code, as analysis continues to add layers of 
annotation that describe known or predicted features along the linear 
sequence. Ten years ago, a few thousand letters, representing a few 
hundred genes, were known from a small number of ‘model’ organ-
isms, where today this has become billions of letters representing tens 
of thousands of genes across a rapidly growing number of organisms. 

The quantity of such data makes it extremely diffi cult to gain a “big 
picture” understanding of its meaning. The problem is further com-
pounded by the continually changing nature of the data, the result of 
new information being added, or older information being continuously 
refi ned. The amount of data necessitates new software-based tools, and 
its complexity requires extra consideration be taken in its visual rep-
resentation in order to highlight features in order of their importance, 
reveal patterns in the data, and simultaneously show features of the 
data that exist across multiple dimensions. 

One signifi cant diffi culty with such problems is knowing, given a set of 
data, how to glean meaningful information from it. To most, the pro-
cess is entirely opaque. Fields such as statistics, data mining, graphic 
design, and information visualization each offer components of the 
solution, but practitioners of each are often unaware of, or unskilled in, 
the methods of the adjacent fi elds required for a solution. 

Visual design—the fi eld of mapping data to visual form—aids under-
standing, but typically does not address how to handle extremely large 
amounts of data. Data mining techniques can handle large amounts of 
data, but are disconnected from the means to interact with them. Soft-
ware-based information visualization adds building blocks for interact-
ing with and representing various kinds of abstract data, but typically 
the aesthetic principles of visual design are treated as less important or 
even superfi cial, rather than embracing their strength as a necessary aid 
to effective communication. For someone approaching a data repre-
sentation problem (such as a scientist trying to visualize the results of 
a study involving a few thousand pieces of genetic data), they will often 
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fi nd it diffi cult to know where to begin (what tools to use or books to 
read are frequent questions). Similarly, it is diffi cult for the same person 
to critically evaluate the representation used, lacking the necessary 
background.

In order to properly address the issue of complex data visualization, 
several fi elds need to be reconciled as parts of a single process. By 
combining the necessary skills into a single, clearly documented fi eld, 
they are made more accessible to those with some partial set of them—
graphic designers can learn the computer science necessary for visual-
ization, or statisticians can communicate their data more effectively by 
understanding the visual design principles behind data representation. 
The methods themselves are not new, but their isolation to individual 
fi elds has prevented them from being used as a whole, since it is rare 
for someone to obtain the requisite background in each. 

The pages that follow outline a process titled Computational Information 
Design that seeks to bridge the individual disciplines, placing the focus 
instead on the data and how it is to be considered—rather than from 
the viewpoint and tools of each individual fi eld. 

1.1 data & understanding

This thesis is about the path from data to understanding. The data 
under consideration might be numbers or lists or relationships between 
multiple entities. The primary focus is information visualization, where 
the data is primarily numeric or symbolic rather than physical (i.e. 
genetic sequence data, where an abstraction of a, c, g, t letters are 
used to describe a physical structure, and are dominated by layers 
of annotation that accompany it), as opposed to another category of 
visualization, which concerns representation of primarily the physical 
nature of its subject (i.e. the physical shape of a molecule, where the 
signifi cance is placed on its shape, rather than numeric attributes that 
describe it). There is overlap between the two categories, but they’re 
used to describe the primary focus of the diagram (physical versus 
numeric features). These defi nitions are discussed further in the third 
chapter.

As a matter of scope, this thesis considers visual methods for the rep-
resentation of data (as opposed to other methods, such as sound, see 
discussion in chapter eight). Because of its ability to process enormous 
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amounts of data, the human visual system lends itself as an exceptional 
tool to aid in the understanding of complex subjects. 

1.2 process

The process of understanding data begins with a set of numbers and a 
goal of answering a question about the data. The steps along this path 
can be described as follows:

1. acquire – the matter of obtaining the data, whether from a fi le 
on a disk or from a source over a network.

2. parse – providing some structure around what the data means, 
ordering it into categories.

3. fi lter – removing all but the data of interest.

4. mine – the application of methods from statistics or data 
mining, as a way to discern patterns or place the data in math-
ematical context.

5. represent – determination of a simple representation, whether 
the data takes one of many shapes such as a bar graph, list, or 
tree.

6. refi ne – improvements to the basic representation to make it 
clearer and more visually engaging.

7. interact – the addition of methods for manipulating the data or 
controlling what features are visible.

Part of the problem with the individual approaches of dealing with data  
is that the separation of the fi elds leads to each person solving an iso-
lated part of the problem, and along the path towards a solution, some-
thing is lost at each transition—a “telephone game” for context, where 

acquire parse mine represent interact

computer science
mathematics, statistics, 

and data mining graphic design
infovis
and hci



14

each step of the process diminishes aspects of the initial question 
under consideration. The initial format of the data (how it is acquired 
and parsed) will often drive how it is structured to be considered for 
fi ltering and statistics or data mining. The statistical method used to 
glean useful information from the data might drive how the data is 
initially presented—the representation is of the results of the statistical 
method, rather than a response to the initial question. 

A graphic designer brought in at the next stage will most often respond 
to specifi c problems with its representation as provided by the previous 
steps, rather than focusing on the initial question itself. Implementation 
of the visualization step might add a compelling and interactive means 
to look at the data fi ltered from the earlier steps, but the result is an in-
depth, interactive look at a data set, using a particular statistical model, 
not a clear answer to the original question.

Further, for practitioners of each of the fi elds that commonly deal with 
data problems, it’s often unclear the necessary methods to make it 
through the wider set of steps necessary to arrive at a solution to the 
problem in question.

This thesis describes the background of each of the individual fi elds in 
chapter three, while chapter fi ve describes this process in depth, also 
citing the unique aspects of their combination.

1.2 tools

An integrated approach usually implies that a single person is meant 
to handle the entire process. For larger projects, it might be possible to 
have one such person oversee the process as acted out by others, but 
still requires that person be thoroughly versed in the individual issues in 
order to maintain the same kind broad overview of the process.

The focus of this thesis is on the single practitioner, and the way that 
single practitioners are enabled is by better tools. Where video produc-
tion was once exclusively the domain of large teams of people with 
expensive equipment, it’s now possible to edit movies on a desktop 
workstation through tools that better enable individual users. This 
hasn’t lead to the larger teams disappearing, but highlights the power 
of individual practitioners enabled by the right tools. 
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As a necessary supplementary component, a tool called Processing has 
been developed in conjunction with this research. It is a Java-based soft-
ware development environment that aims to simplify the construction 
of graphically-oriented software. This goal helps beginners with pro-
gramming concepts by placing the more interesting parts at the surface, 
while also providing a sketching environment for advanced users.

The majority of the projects described in this dissertation were devel-
oped using Processing, and provide examples of its capabilities. 

Processing was conceived of and implemented by Casey Reas and this 
author, and is supported by an international community of collabora-
tors. The project is discussed further in chapter six.

1.3 domain

While every problem is unique, the principles remain the same across 
data sets and across domains. This dissertation has a particular focus 
on the application of these methods across data problems from genet-
ics. A domain was chosen so that specifi c examples could be addressed 
as a real test for the process introduced in this dissertation. 

The diffi culty in selecting a problem domain is that the reader must 
then come to understand parts of that domain in order to evaluate the 
strength of the solution. For this reason, the initial introduction of the 
process in chapter two uses a far simpler data set.

In spite of a focus on genetics, the issues are identical to those that 
must be considered by practitioners in other data-oriented fi elds. Chap-
ter four describes a specifi c example concerning genetic variation data, 
and additional genetics projects are outlined in chapter seven, which 
catalogs information design experiments across several additional 
problem domains.
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2 Basic Example

This section describes application of the Computational Information 
Design process to the understanding of a simple data set —the zip code 
numbering system used by the United States Postal Service. The appli-
cation demonstrated here is purposefully not an advanced one, and 
may even seem foolish, but it provides a skeleton for how the process 
works.

2.1 questions & narrative

All data problems begin with a question. The answer to the question is 
a kind of narrative, a piece that describes a clear answer to the question 
without extraneous details. Even in the case of less directed questions, 
the goal is a clear discussion of what was discovered in the data set in 
a way that highlights key fi ndings. A stern focus on the original intent 
of the question helps the designer to eliminate extraneous details by 
providing a metric for what is and is not necessary.

2.2 background

The project described here began out of an interest in how zip codes 
relate to geographic area. Living in Boston, I knew that numbers start-
ing with a zero were on the East Coast. Having lived in San Francisco, 
I knew the West Coast were all nines. Growing up in Michigan, all our 
codes were 4-prefi xed. In addition, what sort of area does the second 
digit specify? Or the third? 

The fi nished application, called zipdecode, was initially constructed in a 
matter of a few hours as a way to quickly take what might be considered 
a boring data set (45,000 entries in a long list of zip codes, towns, and 
their latitudes & longitudes) and turn it into something that explained 
how the codes related to their geography and, as it turned out, was 
engaging for its users.
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2.3 process

The Computational Information Design process, as it relates to the data 
set and question under examination here.

2.3.1 Acquire

The acquisition step refers to obtaining the data, whether over the 
network, or from a fi le on a disk. Like many of the other steps, this can 
often be extremely complicated (i.e. trying to glean useful data out of a 
large system) or very simple (simply reading a readily available text fi le).

The acronym zip stands for Zoning Improvement Plan, and refers to a 
1963 initiative to simplify the delivery of mail in the United States. Faced 
with an ever-increasing amount of mail to be processed, the zip system 
intended to simplify the process through a more accurate specifi cation 
of geographic area where the mail was to be delivered. A more lengthy 
background can be found on the u.s. Postal Service’s web site.

Today, the zip code database is primarily available via the U.S. Census 
Bureau, as they use it heavily as a method for geographic coding of 
information. The listing is a freely available fi le with approximately 
45,000 lines, one for each of the codes: 

00210  +43.005895 -071.013202  U PORTSMOUTH 33 015
00211  +43.005895 -071.013202  U PORTSMOUTH 33 015
00212  +43.005895 -071.013202  U PORTSMOUTH 33 015
00213  +43.005895 -071.013202  U PORTSMOUTH 33 015
00214  +43.005895 -071.013202  U PORTSMOUTH 33 015
00215  +43.005895 -071.013202  U PORTSMOUTH 33 015
00501  +40.922326 -072.637078  U HOLTSVILLE 36 103
00544  +40.922326 -072.637078  U HOLTSVILLE 36 103
00601  +18.165273 -066.722583  ADJUNTAS 72 001
00602  +18.393103 -067.180953  AGUADA  72 003
00603  +18.455913 -067.145780  AGUADILLA 72 005
00604  +18.493520 -067.135883  AGUADILLA 72 005
00605  +18.465162 -067.141486  P AGUADILLA 72 005
00606  +18.172947 -066.944111  MARICAO  72 093
00610  +18.288685 -067.139696  ANASCO  72 011
00611  +18.279531 -066.802170  P ANGELES  72 141
00612  +18.450674 -066.698262  ARECIBO  72 013
00613  +18.458093 -066.732732  P ARECIBO  72 013
00614  +18.429675 -066.674506  P ARECIBO  72 013
00616  +18.444792 -066.640678  BAJADERO 72 013

www.usps.com/history/
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2.3.2 Parse

Having acquired the data, it next needs to be parsed—changed into a 
format that tags the meaning of each part of the data with how it is to 
be used. For each line of the fi le, it must be broken along its individual 
parts, in this case the line of text is separated by tabs. Next, each piece 
of data is converted to its useful format:

string – a set of characters that forms a word or a sentence  
(used for city/town names), or because the zip codes themselves 
are not so much numbers as a series of digits (if they were num-
bers, then the code 02139 would be the same as 2139, which is 
not the case) they are also considered a string.

fl oat – a number with decimal points (used for the latitudes  
and longitudes of each location). The name is short for “fl oating 
point,” from programming nomenclature of how the numbers are 
stored in the computer’s memory.

char – a single character, in this data set sometimes used as a 
marker for the designation of special post offi ces.

integer – any generic number

index – data (commonly it might be an integer or string) that 
points to another table of data (in this case, mapping numbered 
“fi ps” codes to the names and two digit abbreviations of states)

01 Alabama� � AL
02 Alaska� � AK
04 Arizona� � AZ
05 Arkansas AR
06 California CA
08 Colorado CO
09 Connecticut CT
10 Delaware DE
12 Florida� � FL
13 Georgia� � GA
15 Hawaii� � HI
16 Idaho� � ID
17 Illinois IL
18 Indiana� � IN
19 Iowa� � IA
20 Kansas� � KS

00210   +43.005895   -071.013202   U   PORTSMOUTH   33   015

string \t\t\t\t\t \tstring indexchar index
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Having completed this step, the data is successfully tagged and more 
useful to a program that will manipulate or represent it in some way. 
This is common in the use of databases, where a such a code is used 
as a lookup into another table, sometimes as a way to compact the data 
further (i.e. a two digit code is better than listing the full name of the 
state or territory).

2.3.3 Filter

The next step involves the fi ltering of data, in this case the records not 
part of the contiguous 48 states will be removed. This mean Alaska 
and Hawaii will be removed (as this is only a simple sketch) along with 
other territories such as Puerto Rico.

Again, while simplistic in this project, this is often a very complicated 
and can require signifi cant mathematical work to place the data into a 
mathematical “model” or normalize it (convert it to an acceptable range 
of numbers). In this example, a basic normalization is used to re-orient 
the minimum and maximum longitudes and latitudes to range from 
zero to the width and height of the display. More of the mathematical 
approaches to fi ltering are discussed in chapter six. 

00210 43.005895 -71.013202 PORTSMOUTH NH

00211 43.005895 -71.013202 PORTSMOUTH NH

00212 43.005895 -71.013202 PORTSMOUTH NH

00213 43.005895 -71.013202 PORTSMOUTH NH

00214 43.005895 -71.013202 PORTSMOUTH NH

00215 43.005895 -71.013202 PORTSMOUTH NH

00501 40.922326 -72.637078 HOLTSVILLE NY

00544 40.922326 -72.637078 HOLTSVILLE NY

00601 18.165273 -66.722583 ADJUNTAS PR

00602 18.393103 -67.180953 AGUADA� � PR

00603 18.455913 -67.14578 AGUADILLA PR

00210 43.005895 -71.013202 PORTSMOUTH NH

00211 43.005895 -71.013202 PORTSMOUTH NH

00212 43.005895 -71.013202 PORTSMOUTH NH

00213 43.005895 -71.013202 PORTSMOUTH NH

00214 43.005895 -71.013202 PORTSMOUTH NH

00215 43.005895 -71.013202 PORTSMOUTH NH

00501 40.922326 -72.637078 HOLTSVILLE NY

00544 40.922326 -72.637078 HOLTSVILLE NY
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2.3.4 Mine

This step involves basic math, statistics and data mining. The data in 
this case receives only simple treatment: the program must fi gure out 
the minimum and maximum values for latitude and longitude, so that 
the data can be presented on screen at a proper scale.

00210 43.005895 -71.013202 PORTSMOUTH NH

00211 43.005895 -71.013202 PORTSMOUTH NH

00212 43.005895 -71.013202 PORTSMOUTH NH

00213 43.005895 -71.013202 PORTSMOUTH NH

00214 43.005895 -71.013202 PORTSMOUTH NH

00215 43.005895 -71.013202 PORTSMOUTH NH

00501 40.922326 -72.637078 HOLTSVILLE NY

00544 40.922326 -72.637078 HOLTSVILLE NY

  .          .            .            .       .

  .          .            .            .       .

  .          .            .            .       .

min
24.655691

max
48.987385

min
-124.62608

max
-67.040764
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2.3.5 Represent

The representation step has to do with the basic form that a set of data 
will take. Some data are lists, others are structured like trees. In this 
case, each zip code has a latitude and longitude, so they can be mapped 
as a two-dimensional plot, with the minimum and maximum values for 
the latitude and longitude being used for the start and end of the scale 
in each dimension.

24

latitude

-120 longitude -65

49
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2.3.6 Refi ne

In the refi nement step, the graphic design methods are used to more 
clarify the representation by calling more attention to particular data 
(establishing hierarchy), or changing attributes like color that have an 
impact on how well the piece can be read. While it doesn’t reproduce 
well here, the on-screen coloring becomes a deep gray, and each point a 
medium yellow signifying that all the points are currently selected. 
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u.s. zip codes for the contiguous 48 states, 
plotted by their latitude and longitude
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2.3.7 Interact

The next stage of the process adds interaction as a way to give the user 
a way to control or explore the data. Interaction might cover things like 
selecting a subset of the data (controlling the fi lter) or changing the 
viewpoint. It can also affect the refi nement step, as a change in view-
point might require the data to be designed differently.

In the zipdecode piece, typing a number begins the selection of all zip 
codes that begin with that number. The following images show all the 
zip codes beginning with zero, four, and nine respectively.

As the user will often want to traverse laterally —running through 
several of these prefi xes, holding down the shift key will allow them to 
replace the last letter typed, without having to hit the ‘delete’ key to 
back up. 

The interaction is primitive, but allows the user to very rapidly gain an 
understanding of how the layout of the postal system works. 
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Past the initial number, the viewer can continue to type digits to see the 
area covered by each subsequent set of prefi xes:

Prefi x ‘0’ is New England, ‘02’ covers Eastern Massachusetts.

‘021’ limits down to entries in Middlesex County, and ‘0213’ is a group-
ing of nearby cities. Finally, ‘02139’ hones in on Cambridge, ma itself. 
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In addition, users can enable a ‘zoom’ feature which draws them closer 
to each specifi c choice as they’re made, to reveal more detail around 
the area. Each level of zoom adds more detail to the features, so that 
a constant rate of details is seen at each level. In the case of mapping, 
additional details of state and county boundaries, or other geographic 
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features that help the viewer associate the “data” space of zip code 
points to what they know about the local environment. 

This notion of re-layering the data as the perspective shifts is a useful 
aspect of computational design , a unique feature that comes from the 
combination of several of the steps involved. 

Not visible in the steps shown so far is the kind of iteration that went 
into the project. Each step of the process is inextricably linked because 
of how they affect one another. Because of the need for the representa-
tion to fi t on the screen in a compact way, the data was re-fi ltered to 
exclude territories not part of the contiguous 48 states. 

The method of interaction by typing successive numbers impacted 
the visual refi nement step, where the colors were modifi ed to show a 
slow transition as points in the display were added or removed. This 
prevents the interaction from becoming too jarring and helps the user 
maintain context. 

Later, the representation step affected the acquisition step, as the appli-
cation was modifi ed to show the data as it was downloaded over what 
might be a slow internet connection. This allows the points to slowly 
appear as they are fi rst read from the data fi le as it is streamed over the 
network--employing the data itself as a “progress bar” to depict comple-
tion. 

The interconnections between the steps of the Computational Informa-
tion Design process helps illustrate the importance of addressing the 
fi elds as a whole. 

acquire parse mine represent interact
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2.3.8 Properties

At the intersection between these fi elds are the more interesting set 
of properties that demonstrate the strength of their combination. In 
terms of acquisition, consideration is given to data that can be changed, 
whether once a month or on a continuous basis. This opens up the 
notion of the focus of graphic design on solving a specifi c problem for 
a specifi c data set, and instead considers the meta-problem of how to 
handle a certain kind of data, that might be updated in the future. 

In the fi ltering step, data can be fi ltered in real time, as it is done in the 
zipdecode application. In terms of visual refi nement, changes to the 
design can be applied across the entire system. For instance, a color 
change can be automatically applied to the thousands of elements that 
require it, rather than requiring the designer to painstakingly make 
such a tedious modifi cation. This is the strength of a computational 
approach, where tedious processes are minimized through automation.

Moving further ahead, by making these methods available to a wider 
audience, the fi eld can mature into a point where “craft” is re-intro-
duced into the medium, that the hand of the advanced practitioner can 
be seen in the work, even in a medium of the computer, which is typi-
cally considered algorithmic, unexpressive, and “cold.”

acquire parse mine represent interact
rapid prototyping 

and iteration

juxtapose large 
amounts of data

try multiple 
representations

change 
design rules 

without 
manual 
redesign

computation 
as its own 
“medium”

smooth 
transition 

between states 
to maintain 

context

additional 
information as 

viewpoint 
shifts

modify 
parameters 
of statistical 
methods in 

real-time

live or 
changing data 

sources

modular 
parsers for 
new data 
sources
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2.3.9 Conclusion

The zipdecode project doesn’t quite solve a pressing need in the 
understanding of data, serves to demonstrate the principles used in a 
Computational Information Design approach. It received a surprising 
level of response from the viewing public, where as of the time of this 
writing it receives nearly a thousand visitors a day. This is perhaps sur-
prising for something that might considered as boring as zip code data, 
and even several months after the projects initial introduction and spike 
of early interest.
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3 Background

The visualization of information gains its importance for its ability to 
help us ‘see’ things not previously understood in abstract data. It is 
both a perceptual issue, that the human brain is so wired for under-
standing visual stimuli but extends to the notion that our limited 
mental capacity is aided by methods for “externalizing” cognition. One 
of the few seminal texts covering information visualization, “Informa-
tion Visualization: Using Vision to Think” [Card, 1999] recognizes this 
notion in its title, and spends much of its introduction explaining it, 
perhaps most clearly in their citation of [Norman, 1993] who says:

The power of the unaided mind is highly overrated. Without exter-
nal aids, memory, thought, and reasoning are all constrained. But 
human intelligence is highly fl exible and adaptive, superb at inventing 
procedures and objects that overcome its own limits. The real powers 
come from devising external aids that enhance cognitive abilities. 
How have we increased memory, thought, and reasoning? By the 
invention of external aids: It is things that make us smart.

norman, 1993

As an example of external cognition [Card, 1999] describes how a task 
like multiplication is made far easier by simply doing performing it on 
paper, rather than completely in one’s head.

The idea of externalizing ideas too diffi cult to understand is carried out 
in many disciplines and is remarkably prevalent. As an example, this 
recent passage found in the New York Times:

“Since our theories are so far ahead of experimental capabilities, 
we are forced to use mathematics as our eyes,” Dr.. Brian Greene, 
a Columbia University string theorist, said recently. “That’s why we 
follow it where it takes us even if we can’t see where we’re going.”

So in some ways the men and women seen here scrutinizing marks 
on their blackboards collectively represent a kind of particle accelera-
tor of the mind.

overbye, 2003
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With external cognition through visual means as a basis, the process of 
Computational Information Design draws on the fi elds of Perception, 
Graphic Design, Information Visualization, Statistics, Data Mining, and 
Cartography in an attempt to bring them together as a unifi ed approach 
for the effective handling of complex data. 

3.1 psychology of perception

Colin Ware, an expert in the psychology of perception, makes the case 
for visualization by pointing out the powerful capabilities of the human 
visual system for understanding patterns, and by extension, data:

Why should we be interested in visualization? Because the human 
visual system is a pattern seeker of enormous power and subtlety. 
The eye and the visual cortex of the brain form a massively parallel 
processor that provides the highest-bandwidth channel into human 
cognitive centers. At higher levels of processing, perception and 
cognition are closely interrelated, which is the reason why the words 
“understanding” and “seeing” are synonymous.

ware, 2000

A simple example of this point is seen in the following image from 
[Bertin 1983]. The image compares two methods for representing a set 
of sociographic data sampled from a few hundred regions of France:

Reading the left-hand image requires the viewer to search the image for 
the lowest and highest values, and the short-term memorization of the 
general layout of the numbers. On the right, a qualitative understanding 
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of the image is immediately conveyed—that something is important 
in the Northwest corner, and to a lesser extent in a small region on the 
Eastern edge. This information is conveyed without any active viewing, 
meaning that it is “pre-attentive.” The term is assigned to objects that 
are processed faster than 10 milliseconds; as compared to non-pre-
attentive features requiring 40 milliseconds or more [Triesman, 1988 via 
Ware, 2000]. It is only one of many important aspects of perception, but 
is highlighted here for its importance.

The diagram above (taken from Ware’s text) demonstrates several pre-
attentive features, he continues further, listing them as:

Form – line orientation, line length, line width, line collinearity, 
size, curvature, spatial grouping, added marks, luminosity.

Color – hue, intensity

Motion – fl icker, direction of motion

Spatial position – 2d position, stereoscopic depth, convex/con-
cave shape from shading.

The task is to make the most relevant aspects of the data appar-
ent through pre-attentive features (along with consideration to other 
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aspects of perception). However it is not enough to haphazardly 
assign one such feature to each variable of interest. Instead, the fi eld of 
graphic design can be employed, which provides the skills to weigh the 
variables against one another in the context of the overall data set, and 
to handle the resulting image as a whole. 

3.2 graphic design and data graphics

Given the abilities of the human visual system, it next becomes neces-
sary to consider how to best present the data visually. Graphic design is 
the broad title for the fi eld that addresses this issue, and data graphics 
(also called information design) is a subset that is specifi cally focused 
on representation of data, as opposed to projects like a corporate logo.

William Playfair is widely held to be the father of data graphics. His text, 
The Commercial and Political Atlas [Playfair, 1786] was a series of 44 
charts of time-series data that sought to explain the increasingly com-
plicated economy of the day. One such example is below, which places 
a perspective on the trade balance “to and from England, from the year 
1700 to 1782.”
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He is also believed to be the inventor of the bar chart, which he created 
because one year’s data was missing from another diagram, and he did 
not want to show continuity where there was none [Tufte, 1983, p. 33]

Edward Tufte is often cited as the modern day standards-bearer with 
regard to data graphics, primarily for his three texts [Tufte, 1983, 1990 
and 1997] on the subject. These books enjoy a best-selling status and 
much acclaim perhaps most signifi cantly for their ability to convey 
the principles of proper design to an exceptionally wide audience. The 
books are easy to read and visually appealing with specifi c rules (such 
as “reduce non-data ink”) for proper design. Such rule sets are comfort-
ing for an unfamiliar audience, and a useful introduction to the fi eld.

The principles are a well-ordered compendium of the contemporary 
knowledge of codifi ed as a series of proper practices for the design of 
data. Contemporary graphic designers, for instance, will often have 
procured identical knowledge simply because it was embedded in their 
training (though one could argue that the texts themselves have had 
their impact on design training as well).

One of the most important points made in Tufte’s texts are his clear 
articulation of the importance of visual design for understanding data, 
noting that “graphical excellence consists of complex ideas commu-
nicated with clarity, precision, and effi ciency,” a divergence from the 
expectation that somehow visual design serves to make data pretty or 
entertaining.
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The example above from [Tufte, 1997] shows the redesign of a visualiza-
tion of storm cloud formation. While the fi nal image is generally consid-
ered more attractive, more importantly it’s far easier to read through the 
addition of actual scale of the units in use (answering the questions “by 
how much?” and “in comparison to what?”). Grid lines, used to depict 
size are decreased in their importance so that they no longer dominate 
the image. A less dramatic use of lighting model is used, meaning that 
the cloud actually looks like a cloud. The fi nal diagram is engaging and 
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likely to draw in even viewers who might not be interested in the subject 
in question. 

The books fall short in addressing three  important aspects of contem-
porary information design problems. Notably absent are situations in 
which the data in question is undergoing continual change. In addition, 
none of the examples have the complexity of something as vast as the 
human genome. And fi nally, the texts have little to say of methods for 
interacting with the data as a way to learn about it. Information Visual-
ization attempts to deal with some of these aspects, however there is 
often little regard to the visual design principles espoused by Tufte and 
the design community.

3.3 information visualization

Visualization as a sub-fi eld of science, statistics, and graphics has only 
been recognized as its own entity since the mid- to late-80s. The depth 
of seminal work is in line with that of a young fi eld, but fi nds its strength 
in background drawn from years of statistics and graphic design.

A succinct defi nition of Visualization is found in [Card et al, 1999]

Visualization – the use of computer-supported, interactive, visual 
representations of data to amplify cognition.

Visualization is concerned with non-abstract data sets, for example 
imagery from weather data or an animation describing the movement 
of a fl uid. For this kind of data, representations or physical analogues 
already exist. When studying scientifi c phenomena, this is sometimes 
called scientifi c visualization (although that term tends to be poorly 
defi ned, since it can apply to the next case as well).

Information Visualization – the use of computer-supported,  
interactive, visual representations of abstract data to amplify 
cognition.

Information Visualization, by contrast, is concerned with making an 
abstract set of information visible, usually in circumstances where no 
metaphor exists in the physical world. It is also sometimes called data 
visualization, referring to the raw material used to create the image. 
This thesis is concerned solely with information visualization.
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An emphasis on the quality of visual design is notably absent from the 
generally accepted defi nition above, and this is born out in the major-
ity of work in the fi eld. Perhaps visual design is generally considered to 
be of lower importance, as it is often perceived as a non-quantifi able 
and endeavor to make the representation more subjectively attractive. 
While that may be a side effect, the issue is not that the visual design 
should be “prettier”. Rather, that the approach of the visual designer 
solves many common problems in typical information visualization. In 
addition, what are commonly considered cosmetic tweaks may be less 
important for a simple diagram (tens or hundreds of elements), but 
for a complex data set (thousands of elements) they become extremely 
important, because what were minor problems in the diagram of a 
smaller data set are vastly magnifi ed in a larger one.

A simple example comes from the TreeMap project [Bederson, 2002 
and www.cs.umd.edu/hcil/treemap/] at the University of Maryland. Ben 
Shneiderman’s Human-Computer Interaction Laboratory (now run by 
Bederson) has been a standards bearer for the Information Visualiza-
tion fi eld for having popularized “dynamic queries” [Shneiderman, 
1994], tree maps, and others. The image that follows is taken from a 
recent version of the TreeMap software.
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The representation suffers from overall layout issues, as well as minute 
details combine to create a larger problem. Too much of the screen is 
taken with a series of sliders on the right, rather than focusing on the 
data itself (including a large gap of dead space in the bottom right), so 
instead the narrow sliders could easily be moved to the bottom of the 
screen for better space economy—meaning that the data itself could 
take up an additional ten to twenty percent of the screen.

At the micro level, details like the frame around each block of data, 
and the method used for drawing the heading, cause a great deal of 
visual noise. The borders around the smaller blocks wind up larger than 
the data itself, which is confusing for the user. The labels, having the 
same rectangular shape as the data itself, creates additional confusion. 
Removing the labels and reversing their text out of the colored blocks 
would be an improvement in clarity, allowing each block (the data itself, 
the most important thing in the image) to recover more screen area.

The issue is about diagrams that are accurate, versus those that are 
understandable (or subjectively, those that viewers prefer to look at). 
An image under the Information Visualization defi nition may properly 
represent all aspects of the data set (such as the example above), while 
failing to be as effective as possible in helping the viewer understand 
the data in question. 

3.4 data analysis and statistics

Data Analysis, is something of an extension to Statistics. The statisti-
cian John Tukey developed Exploratory Data Analysis largely in response 
to what he saw as a fi eld that had become too attached to the applica-
tion of specifi c methods to data rather than the original intention of the 
fi eld, which was to come to an understanding about the data in ques-
tion.

For a long time, I have thought that I was a statistician, interested in 
inferences from the particular to the general. But as I have watched 
mathematical statistics evolve, I have had cause to wonder and to 
doubt. And when I have pondered about why such techniques as 
the spectrum analysis of time series have proved so successful, it 
has become clear that their ‘dealing with fl uctuations’ aspects are, 
in many circumstances, of lesser importance than the aspects that 
would already have been required to deal effectively with the simpler 
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case of very extensive data, where fl uctuations would no longer be a 
problem. All in all, I have come to feel that my central interest is in 
data analysis, which I take to include, among other things: proce-
dures for analyzing data, techniques for interpreting the results of 
such procedures, ways of planning the gathering of data to make 
analysis easier, more precise or more accurate, and all the machinery 
and results of (mathematical) statistics which apply to analyzing 
data. 

tukey, 1962

The quote shows Tukey’s return to what initially made him curious 
about statistics—analysis, interpretation, as well as simplifi cation and 
improvement of the methods therein. This focus on curiosity about the 
data, rather than the fi eld itself, drove Tukey’s many accomplishments 
(including the co-invention of the fast fourier transform), and laid the 
groundwork for the fi eld of Exploratory Data Analysis. (He is also cred-
ited with coining the terms “hardware”, “software”, and “bit”). True to 
form, he introduces his seminal “Exploratory Data Analysis” book as:

…looking at data to see what it seems to say. It concentrates on 
simple arithmetic and easy-to-draw pictures. It regards whatever 
appearances we have recognized as partial descriptions, and tries to 
look beneath them for new insights. Its concern is with appearance, 
not with confi rmation.

tukey, 1977

This is perhaps best exemplifi ed by his “stem and leaf” plots, an exam-
ple taken from the same text is shown at the top of the next page. 

Consider 17 used car prices: $250, 150, 795, 895, 695, 1699, 1499, 1099, 
1693, 1166, 688, 1333, 895, 1775, 895, 1895, and 795. To see what these 
data “look” like, a stem and leaf plot can be used. The four steps below 
show how the plot is constructed. The plot is constructed by fi rst order-
ing the numbers by their leading digits (signifying 1 for 100 through 18 
for 1800). The second image shows those trailing digits being removed 
from the diagram because they’re redundant. Next, the right most digit 
is removed, since they’re less important than the others (the difference 
in price between $1490 and $1495 is irrelevant to understanding the 
overall trends in the data set). 

Finally, the right most image is the stem & leaf plot, a compact repre-
sentation of the data set. The left-hand side are the leading digits of the 
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numbers, the right-hand side is the second-to-last digit, since the plot 
uses increments of $10. So the fi rst line is for $150, since the leading 
digit is 1, the next is 5, meaning 15, which is multiplied by the $10 incre-
ment (signifi ed by the asterisk) to make $150. While not immediately 
intuitive, it can be learned in a matter of minutes, and is a powerful tool 
for understanding numbers by scratching them down on paper. 

So for the series of numbers that took two lines, they can now be seen 
as a distribution, with the digits at right signifying how many of each 
value are present. Immediately, a clustering can be seen around $600, 
$700, and $800. In addition, a glance down the column tells us that 9s 
are prevalent in the pricing (looking at the original prices will verify the 
fact that there are several prices ending 95 and 99).

Even this simple representation reveals much about the data. This is 
fascinating for two reasons. First, that an image so basic can be both 
quickly created and rapidly understood. The method is perhaps non-
obvious on initial observation, but the learning curve is brief and worth 
the payoff. Second, the diagram itself shows that the representation 
of the data need not be visually intricate or over-designed in order to 
convey the data. The latter point is important to be consider with the 
emphasis on graphic design—that the design is not a matter of fancy 
graphics or visual tricks, rather that it is a means to an end for creating 
the cleanest, most understandable diagram possible.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

150
250

695, 688
795, 795
895, 895, 895

1099
1166

1333
1499

1693, 1699
1775
1895

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

150
250

695, 688
795, 795
895, 895, 895

1099
1166

1333
1499

1693, 1699
1775
1895

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

150
250

695, 688
795, 795
895, 895, 895

1099
1166

1333
1499

1693, 1699
1775
1895

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

5
5

98
99
999

9
6

3
9

99
7
9



44

3.5 data mining

Data mining is essentially statistics mixed with computational meth-
ods for handling large data sets, in particular, it is a combination of 
theory and application between statistics and databases. “The science 
of extracting useful information from large data sets or databases is 
known as data mining.” [Hand, 2001] The fi eld concerns itself with a 
large-scale version of the type of exploratory data analysis pioneered by 
Tukey, and backed with databases and additional software. However, in 
the process it often loses the visual aspect of Tukey’s foraging through 
numbers. For instance, when confronted with a database, one might 
want the computational equivalent of an interactive “stem and leaf” dia-
gram, so that the user could quickly become familiar with the contents 
of the database before engaging in more specifi c analysis. An offshoot 
of Tukey’s work in “Exploratory Data Analysis” is centered on such 
ideas, but falls short of the simplicity of what can be observed from his 
common-sense focus to statistics and data.

Computational Information Design takes the strength of data mining 
for handling large data sets and mixes the analysis methods back 
in, while also placing an emphasis on information visualization and 
graphic design. 
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3.6 information visualization 
 and data mining

In one of the rare crossover events between the fi elds, a collection of 
articles “Information Visualization in Data Mining and Knowledge 
Discovery” [Fayyad, Grinstein, & Ward, 2002] was published. One of its 
editors, Georges Grinstein, describe it as “the result of two workshop 
whose goals were to open up the dialog between researchers in visu-
alization and data mining, two key areas involved in data exploration.” 
The text itself is “a collection of papers, some of which are tutorial, 
some idealized positions, some seminal in nature, and some provoca-
tive.” It is notable that this sort of collaboration between the members 
of the two fi elds was considered “new” or “different” from regular prac-
tice, as both fi elds are at the forefront of data understanding, yet in their 
respective disciplines.

In one of the introductory papers [Grinstein & Ward, 2002], Grinstein 
describes a set of steps that are quite similar to the process I was devel-
oping as Computational Information Design:

data select – get a subset of the data 

data manipulate – smooth, fi lter, interpolate

representation – choose what dimension is assigned to what vari-
able, or change the colormap

image operations -– changing orientation and viewing 

visual interactions – navigate & manipulate elements

This covers much of what is considered in this thesis, however nota-
bly absent is the aspect of visual refi nement, as espoused for instance 
by Tufte, that proper tuning of the graphical aspects of the image are 
essential to understanding data. 
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3.7 cartography

Additional background can be found in mapping and cartography. It 
also encompasses several of the fi elds already discussed. Data for geo-
graphic features is notoriously voluminous, and the resulting represen-
tation extremely dense. Yet cartographers have mastered the ability to 
successfully organize geographic data in a manner that communicates 
effectively. Cartography is a useful model because it synthesizes illustra-
tion, information design, statistics, and most often employs technologi-
cal tools for implementation.

There are two general categories of maps. One is used to gain an under-
standing of high-level geographic features like the location of moun-
tains in the United States or comparing the size of New England to the 
rest of the country. Conceivably, this is the goal of the current genomic 
maps, to understand a broad overview of the data, and perhaps pick up 
a few interesting parts. For instance, in the recently published mouse 
genome, one of the fi ndings was a remarkable similarity to the human 
genome, with a few exceptions that were mostly related to ‘mouse like’ 
features, i.e. an improved sense of smell. The goal would be well made 
maps of the human and mouse genomes that could be visually com-
pared and such differences quickly revealed.

A second type of map, such as a street atlas, has a more specifi c pur-
pose, in being useful to provide navigation. Genome maps could also 
be treated in such a way, having a more directed purpose than simply 
showing all the data. It is necessary here to consider what kind of task, 
if not navigation, is being supported. This directs the pursuit of a more 
relevant picture.

Images from Microsoft MapPoint 2002
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Extending cartography in the direction of Computational Information 
Design, one might look at how would relate to genetic data. In such a 
case, four aspects require additional consideration, which fall along the 
lines of the process outlined in the previous chapter. First, the amount 
of data necessitates computational methods for handling it. To take an 
example from genomics, a fi le listing a set of features currently known 
for human chromosome 20 (one of the shortest) contains 62,000 lines. 
It would be impossible for a designer to manually handle this much 
data, much less to have the resulting image quickly become irrelevant, 
as more information becomes known.

That situation leads to the second consideration: that the input data is 
undergoing continual change. Genomic data is in a process of dis-
covery, where new features are continually added and refi ned. In the 
months following the publication of the fruitfl y genome, a series of con-
taminated data was discovered, causing the re-release of the informa-
tion, and rendering its published map somewhat inaccurate. The speed 
of discovery is accelerating, with no expectation of any kind of ‘comple-
tion’ in the near future. This expectation of change suggests that rather 
than focusing on a fi nal outcome, genomic cartography should be a 
fl exible process around a dynamic diagram that can handle change. To 
attain this fl exibility, software presentation methods must be grounded 
in variability—the positioning of elements must be semi-automatic, 
based on rules set by the cartographer. Rather than simply applying 
rules of graphic design, the designer must be able to abstract some of 
these rules and implement them as active software elements.

Third, while it is useful to create large format printed images like tradi-
tional maps, the more common rendition of this work will be in interac-
tive software. In such software, the end-user might select feature layers 
based on what is most important for their research, or use viewing 
techniques to zoom into a section, or pan along a data set. 

The fourth, and perhaps most diffi cult issue, is that the process needs 
to be accessible to a wider audience (i.e. designers, or computational 
biologists, for the example in question). In additional to the lack of pro-
cess, few tools exist that can cover most of the issues presented. 
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3.8 the visible language workshop

The Visible Language Workshop, founded by Muriel Cooper, operated 
from roughly 1976 until she passed away in 1994. The group embraced 
the collision of visual design and computer science and sought out how 
the combination would change the fi eld of design. 

Their work studied themes of automatic layout, programmatic genera-
tion of design alternatives, kinetic information display, and a range of 
other themes. Such work highlights the fact that the idea of a mixture of 
disciplines as in Computational Information Design is not a new idea, 
so much as a natural evolution of where the fi elds are headed. 

3.8.1 Financial Viewpoints

Typical of this work was the Financial Viewpoints project by Lisa 
Strausfeld [Strausfeld, 1995]. The project examined mutual fund data, 
juxtaposing several spreadsheets together in three dimensional space. 
The planes were essentially those of a standard two dimensional 
spreadsheet, intersecting one another where they linked, for compari-
son and analysis. The project was both a step forward in information 
graphics, particularly as employed on the computer, but also touched 
on aspects of interaction and visual refi nement in a thorough way. It 
is an example of what could be considered Computational Informa-
tion Design, where the many stages of the process are linked together 
tightly. 

One missing factor, however, was the fact that the tools to create this 
work were expensive graphics workstations and complex programming 
languages and support libraries. An opening for such work in current 
day practice is that such a project can now be built on an inexpensive 
PC, and work is being done (such as the Processing system described 
in chapter six), to bring the necessary programming skills to a wider 
audience. By widening the fi eld, the focus can switch from the VLW-
era questions regarding what does the computer mean for graphic 
design, to a critical discourse about what type of work is interesting and 
relevant in the context of the computational media. Three dimensional 
spreadsheet systems have not yet taken hold as a standard means of 
understanding multiple layers of data as implemented in Financial 
Viewpoints, perhaps because while an interesting concept, it diverged 
too far from standard modes of understanding data employed by the 
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target audience. Where at the time the interesting aspect of the project 
was the implementation (previously no such thing existed), rather than 
the practicality of use, more contemporary discourse can instead push 
forward based on such lessons because the implementation is far less 
of an issue. 

3.8.2 Improvisational Design

Another notable product of the Visible Language Workshop is the work 
of Suguru Ishizaki, whose Ph.D. thesis [Ishizaki, 1995, later published 
as Ishizaki, 2003] described a process of design for dynamic media that 
used the metaphor of improvisational performance. Ishizaki describes 
the need for such a model because a designer cannot address every 
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single design task in an era of always-on internet connections and ever-
changing information.

The thesis describes the computational designer as more of a choreog-
rapher, whose task is to order and move the elements of a continually 
changing space. He addressed the process because:

…in digital media, designers often fi nd it impossible to design a 
solution to a particular problem. Instead, they must design a way of 
designing, or a process, in the form of a computer program that can 
generate design solutions at run time.

ishizaki, 2003

But such solutions are fraught with problems, because of a tendency for 
a breakdown between artifacts generated by machines versus humans: 
“automatic is a bad word for design, implying average quality prod-
ucts.” To clarify, he notes that the computer is acting “on behalf of,” not 
“instead of” the designer. He balances the automation of the computer 
against the reasoned hand of the designer to build systems that, rather 
than replacing designers, augment the abilities of the designer or open 
possibilities where there were none before. This distinction is impor-
tant, because it provides more a realistic attribution to the abilities of 
machines (primarily to reduce repetitive tasks) versus those of human 
beings (ability to reason and make complex decisions). Without a major 
breakthrough in artifi cial intelligence, this distinction will hold for many 
years to come.
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4 Advanced Example

This chapter describes a study of methods to understand the differ-
ences in the genomes of multiple people. The text fi rst covers the scien-
tifi c background of research in genetic variation, along with a survey of 
previous approaches for representation of the data, and then describes 
how to use Computational Information Design to develop a more in-
depth approach for analysis and visualization.

4.1 introduction to genetic data

Inside the nucleus of very cell of the human body, 3.1 billion letters of 
genetic code can be found. The information is stored on 23 pairs of 
tightly wound chromosomes (shown above), long chains of the nucleo-
tide bases adenine, cytosine, thymine, and guanine. These four bases 
are commonly depicted using long strings of a, c, g, and t letters, and 
contain the entire set of instructions for the biological construction of 
that individual. This blueprint is known as the human genome.

Amongst the billions of letters are some 35,000 genes [International 
Genome Sequencing Consortium, 2001], which are subsections known 
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to contain a specifi c set of instructions for building proteins (or other 
materials that handle how proteins are used). A typical gene, approxi-
mately 1600 letters in length, is shown below:

Even within the gene, commonly all not all the letters are used to code 
for the protein. The coding regions, shown here in a darker color, are 
known as exons, and are mixed with other material that might regulate 
or provide no additional function, called introns.
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4.2 coding sequences and transcription

During the process of transcription, a gene is copied by the cell’s 
machinery, and everything but the exons are clipped out of the copy. The 
result for this gene is that the three exons are placed in succession to 
one another. The transcription process reads the a, c, g, and t letters, 
every three of which specify a particular amino acid. The table shown 
here shows the amino acid produced for every possible three letter set 
(called codons). For instance, when the cell reads a, c, and then g, the 
amino acid “threonine” will be produced. 

The amino acid that is chosen depends on each of the letters in suc-
cession, a three-dimensional problem where the outcome is dependent 
on the successive refi nement of possible amino acids, based on the 
order in which the letters are used. Each letter affects the number of 
possible choices for the next, each having slightly less importance than 
the letter before it, and the fi nal letter has the least importance because 
the amino acid is often chosen based on the fi rst two, a situation known 
as four-fold degenerate. This nuanced ordering of the letters is a diffi cult 
concept to describe in words, but a diagram makes the patterns imme-
diately obvious.

With that in mind, the design of the diagram should be focused on 
revealing the pattern of how the letters affect one another, because the 
pattern will be easier to discern (and remember) than simply memo-
rizing the 64 possible mappings to the 20 amino acids. In the design 
below, the viewer selects the fi rst letter from the top, which will restrict 
the remaining choices among one of the four blocks. 

In fact, the transcription process uses uracil 
(denoted by a U) instead of thymine (T), but 
T is used in the description here for sake of 
simplicity.

This new arrangement of the genetic code 
diagram is read counter-clockwise, following 
the letters from largest (at the top) to small-
est (at the bottom). The size indicates which 
letter is to be read fi rst, while also helping 
to place the most emphasis on the fi rst two 
letters which have the greatest impact on the 
selection of the amino acid. 



54

The second letter is chosen from the left-hand side, which limits the 
remaining choices to a specifi c row. The third letter is selected from the 
bottom, which determines the column within the row. However, as can 
be seen above, the row often extends across all four letters (a four-fold 
degenerate), meaning the third letter won’t have an effect in determin-
ing the amino acid used. In other cases, only two possibilities exist 
(such pairs are called two-fold degenerates). This subtle rearrangement 
attempts to be simpler than common versions of this table, which tend 
to be cluttered with all choices for each letter or can be disorienting for 
a viewer because they require forward and backwards reading. Most 
important, it focuses on revealing what’s interesting about the data—
the weighted importance of each letter, and employs that to create 
a clear diagram. Few data sets are rigid and generic, there is almost 
always something interesting that can be pulled from them, so the role 
of the designer is to fi nd that pattern and reveal it.

In addition, a small amount of color can be employed in the diagram to 
reveal the hydrophilic amino acids being grouped at the top, with the 
hydrophobic found primarily on the bottom. If not using color, the same 
could be achieved with a gray pattern or other visual device.

Adding the chemical structures of the amino acids would expose more 
patterns that would go even further to explain why amino acid transla-
tion works the way it does. 

An interactive version of the diagram allows the user to select letters 
in succession, and observe the selections that remain. A three dimen-
sional drawing is used to emphasize the selection.
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This version 
only shows 
the letters in 
question at 
each stage, 
extending 
the block of 
each sub-
selection 
forward until 
the fi nal 
amino acid 
is chosen. 
The starting 
position is 
at the left, 
the second 
image is just 
after C has 
been chosen 
as the fi rst 
letter, fol-
lowed by A 
and in the 
fi nal frame, 
C is chosen 
for the third 
letter, bring-
ing forward 
the amino 
acid histi-
dine. The 
interactivity 
helps the 
user to 
learn how 
the relation-
ships work 
through 
experimen-
tation.
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4.3 changes to coding sequences

Changes can occur in the genetic sequence, either due to copy errors 
or other outside effects, resulting in a letter that changes which may in 
turn alter the amino acid produced. In the case of the HBB gene shown 
a few pages previous, the fi rst few amino acids are as follows:

Sickle-cell disorder involves a change in the fi rst glutamate in the 
sequence:

The second letter of the codon changes from an A to a T, which in turn 
produces the amino acid valine, instead of glutamate:
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The change disrupts the amino acid chain by changing its shape, caus-
ing detrimental effects to the body:

When the mutated hemoglobin delivers oxygen to the tissues, the red 
blood cell collapses, resulting in a long, fl at sickle-shaped cell. These 
cells clog blood fl ow, resulting in a variety of symptoms including 
pain, increased infections, lung blockage, kidney damage, delayed 
growth and anemia (low blood cell count).

gslc.genetics.utah.edu/units/newborn/  
infosheets/sicklecelldisorder.cfm

The characteristic shape of sickle cell can be seen in this image, where 
the collapsed cell forms a “sickle” shape:

As noted in the amino acid table, not all changes will alter the charac-
ter of the instruction set. Not all changes cause deleterious effects like 
susceptibility for a disease, they might simply modify something basic 
like one’s eye or skin color.

Original image source is unknown.
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4.4 tracking genetic variation

While it’s rare that a single letter change will be responsible for some-
thing as dramatic as a disorder like sickle cell, they are still a power-
ful means for understanding and tracking change in individuals and 
populations. 

Such a change is called a snp (pronounced “snip”, and an acronym for 
single nucleotide polymorphism). When the genomes for two unrelated 
people are compared, a snp can be observed roughly every thousand 
bases. It is possible to fi nd other single-letter changes in the code that 
are simply random, but snps are unique in that they are seen in an 
identical position across multiple people. A snp is a result of some 
random effect, such as an error during meiosis, where the genetic data 
of a cell is copied during the process of creating a second identical cell.

Each snp is one of two letters (variations), and several projects have 
both taken place [snp.cshl.org] and are underway to produce a com-
prehensive catalog of all the variations that are found in the human 
genome [www.hapmap.org], along with a representative percentage of 
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how often each of the two variations are found. It is believed that a full 
catalog of all such variations would show one every 300 letters.

Typically, this data will be studied with a few dozen or hundreds of indi-
viduals representing a population. A set of a few dozen to a hundred or 
more snps are observed across the group, forming a large table of the 
raw data:

Because every individual has two sets of chromosomes, the snp on 
each chromosome may be different from the snp in the identical posi-
tion in the second chromosome. This situation is called heterozygous, as 
opposed to homozygous, where the same snp is found on both chro-
mosomes. 
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As a way of representing this raw data for populations, the Visual Geno-
type program has been developed by the Nickerson Lab at University 
of Washington. It colors each entry in the table of people versus snps 
based on whether it is heterozygous, homozygous for the most com-
monly occurring snp, or homozygous for the rare variation of the snp. 

Above, the image output from Visual Genotype shows a series of data 
for the ace2 Angiotensin I converting enzyme [Nickerson et al, 1998 
and Rieder et al, 1999]. The image seems to convey a great deal of 
variation in the data set, yet makes no attempt to clarify it or highlight 
what kind of variations actually exist. When considered in terms of the 
Computational Information Design process, it’s clear that the data is 

being acquired, parsed and represented in a very basic way, without 
regard for fi ltering or mining the data, much less given care of visual 
refi nement or adding the use of interaction to improve how the data set 
can be explored. 
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To address these issues, a ‘mining’ step is added, where the data is 
clustered into useful groupings based on the rows that are most similar. 
This way the viewer can see both the rows that are similar, while it 
highlights the differences between those similar rows by placing them 
adjacent to one another, aiding the eye to understand what’s inside the 
data set:

For an image to be useful, the relevant or key results should be imme-
diately obvious, so that the viewer need not spend a great deal of time 
fi rst trying to understand what might be important. Diagrams can 
themselves be complex, requiring some time of study before they’re 
understood, but the basic idea being expressed needs to immediately 
apparent. It is similar to hearing someone speak in a foreign language, 
where even if it’s not possible to understand the language (the specif-
ics of the diagram) it’s generally possible to tell whether they’re angry 
or happy (what parts of the diagram are relevant and require further 
inspection). The original image fails such a test, partly due to the deep 
coloring of the image, creating an overall muddy appearance. Taking 
this into account, a new set of colors were chosen for the image seen 
on the next page.

In the previous version of the image, the dark blue boxes, which stood 
for ‘homozygous common’ are given a lighter gray color, to place them 
further in the background. The gray color that was previously used to 
denote ‘missing’ data is simply set to white, so that the data is simply 
missing from the diagram, rather than calling attention to itself. The 
two colors for the ‘rare’ genotypes are set to a pair of opposing but 
equal colors, and given greater importance than the background infor-
mation in the diagram. 
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Small breaks are made in the table to further the sense of visual group-
ing between the ‘clusters’ of data rows. The goal of a diagram like this 
one is to help reveal patterns in a data set, so the representation should 
also emphasize those patterns.  The groupings help the viewer break 
the large data into smaller pieces mentally, making it simpler to learn. 

As a minor point, as compared to the original, the text at the top of 
the redesigned version has been oriented at a rotation, and the shorter 
numbers made to the same as the others so that they don’t attract 
additional attention to themselves. In addition, as the user moves the 
mouse around the diagram, the row and column heading is highlighted 
for better clarity, and the associated data type is highlighted in the 
legend. This simple interaction helps associate each entry with its label. 

The resulting product makes the case for Computational Information 
Design through a more complete depiction of the process used:
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4.5 bifurcation plots

Another method of looking at variation data is to examine how the data 
differs between individuals, as it bifurcates from a center point of one or 
several snps. 

This diagram plots bifurcation and was introduced in [Sabeti et al, 2002] 
as a way to depict stretches of particular regions were conserved, often 
a sign of natural selection, meaning that the region is perhaps advanta-
geous to the individual and is therefore more likely to survive and pass 
that set of variations on to its offspring (because of the region having 
impact on the survival rate of the organism). 

A redesign of this diagram seeks to clarify it further by eliminating the 
blobby effect that can obscure the exact data. In addition, interaction is 
used to allow the user to add or remove individuals from the image, so 
that it’s easier to understand where the shifts happen and the origins 
of the shapes found in the diagram. The following sequence shows just 
one individual, then the separation as a second individual is added. 
Changes are shown as they happen from a snp roughly in the center. 
This sequence shows one, two, three, then several individuals having 
been added:
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Once the diagram has reached many individuals, it might be appropri-
ate to remove the text, so that a more compact, overall picture can be 
seen of the data:
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The process for the redesigned version is shown above, and highlights 
some of the inter-working between the how interaction can be used to 
affect other parts of the process.

By pressing keys in the program, the user can add or remove individu-
als, altering the fi ltering used for the data. The user can also control the 
viewing mode, offering a way to refi ne the representation dynamically, 
optionally disabling the text to avoid a cluttered appearance when a 
large amount of data is in use.
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4.6 haplotypes

Many diseases (i.e. diabetes) are at least infl uenced by genetics, so by 
tracking differences in the genetic data of those who are and are not 
affected by a disease, it’s possible to fi gure out what area of the genome 
might be infl uencing that disease. Simply put, if one, or a group of 
related snps (called a “haplotype”) is more common in a group of 
people with the disease in question, then there is a likelihood that those 
changes contribute to the cause or associated effects of the disease.

snps are often found in groups, which are called haplotypes. The 
haplotypes are groups of snps that most commonly change together, 
because of how the chromosomes are inherited from one’s parents.

The letters of genetic code are found along 23 pairs of chromosomes. 
Through conception, one set are passed along from a person’s mother, 
the other half from the father. Each parent has two sets of chromo-
somes from their own parents. As the chromosomes are copied to be 
passed on, crossover occurs, where the beginning of one chromosome is 
linked to the end of another. The myriad of possible combinations drive 
the diversity that comes from genetic variation. 
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But in spite of the many variables involved, the predictable elements 
of this process mean that one can determine, with some degree of cer-
tainty, what traits came from one parent or the other through combina-
torics and probability. This becomes useful for disease studies because 
given the letters read from several randomly placed snps from mother, 
father, and child, a researcher must be able to reconstruct the two chro-
mosomes passed on to the child. The process of reading snps from 
each individual happens only in terms of position—it is not physically 
possible (with current methods) to separate one chromosome from the 
other and read them individually. Instead, the mathematical methods 
(called phasing) are used, because it is necessary to know which varia-
tion for the snps are found on each chromosome. The ordering is 
important in determining how closely related snps are to one another, 
so that a general structure (a set of haplotypes) can be determined from 
each chromosome. 

The goal of the human genome project was to produce a consensus 
version of the 3.1 billion letters of code, though less focus was placed 
on understanding how the genome varies between people. With that 
structure in place, the penultimate project of population genetics is the 
hapmap project [www.hapmap.org], which is an attempt to catalog the 
variation data from several people across multiple populations. The 
hope is that this data set will provide insight into how the genome has 
evolved over time (is it random? or are we remarkably similar?), as well 
as patterns of inheritance for many types of diseases (why does this 
disease occur? why has it not disappeared through natural selection?). 
The hapmap catalog will include thirty child/mother/father sets (called 
trios), across three distinct populations (Europeans, Africans, and 
Asians) that can be used as a reference set for answering such research 
questions.

The methods described here form the background for population 
genetics [Hartl & Clark, 1997] which is the study of how genetic data 
varies between groups of people and larger populations. And although 
this chapter will focus on snps, it is only one type of variation in the 
genome. 

What follows are some of the methods used to visualize data from 
Haplotype and Linkage Disequilibrium testing. The techniques them-
selves have emerged out of necessity during the last few years, but have 
yet to be addressed with regards to the effectiveness of their representa-
tions in communicating the nature of the data they seek to describe. 
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4.6.1 Linkage Disequilibrium

A powerful tool for understanding variation in genetic data is linkage 
disequilibrium (ld) testing, where genetic data is scanned for statisti-
cally relevant patterns. Linkage is the connection between the occur-
rence of a feature, in this case snps. Disequilibrium simply refers to an 
upward or downward change that deviates from what might normally be 
expected if the snps were to appear at random (no correlation to one 
another).

One such method for testing ld is the D´ statistic, which originated 
from Leowontin’s D statistic [Leowontin, 1964]. D is calculated given  
snps from two locations (or loci), multiplies the probability that both 
snps are observed together (P

AB
), and subtracts the frequency of each  

(p
A
 and p

B
) multiplied by one another. The function reads as:

 D = P
AB

 – p
A
p

B

For instance, to calculate D for the data set at right, one fi rst counts the 
how often C appears in the fi rst column, and divide by 20, the number 
of . The result will be p

A
, the probability that C will appear. In this case, 

there are ten Cs, meaning:

 p
A
 = 10 / 20 = 0.50

On the other hand, pb is the probability for C, the major allele, to 
appear in the second column:

 
p

B
 = 11 / 20 = 0.55

Finally, P
AB

 is the frequency with which the major allele appears in both 
columns, meaning the number of times C appears in the fi rst and C 
also appears in the second:

 P
AB

 = 9 / 20 = 0.45

So to calculate D for this data set, the result would be:

 D = P
AB

 – p
A
p

B

 D = 0.45 - (0.50 × 0.55) 

 D = 0.45 - 0.275

 D = 0.175

Unsorted

C C

A G

A C

A G

C C

A G

A G

C C

A C

A G

C C

A G

C C

C C

A G

A G

C C

C C

C G

C C

Two locations 
from the fi rst 
twenty indi-
viduals used 
in the data 
set in the next 
section.
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The D´ statistic is calculated by dividing D by its maximum value, which 
is calculated as:

 min(p
A
p

b
, p

a
p

B
) if D > 0, or

 max(p
A
p

B
, p

a
p

b
) if D < 0

The value of p
a
 is the probability that the opposite snp (A instead of C) 

appears in the fi rst column. In the same manner, p
b
 will be the probabil-

ity of G appearing in the second column:

 p
a
 = 10 / 20 = 0.50

 
p

b
 = 9 / 20 = 0.45

Because D is greater than zero, min(p
A
p

b
, p

a
p

B
) will be used:

 D´ = 0.175 / min(0.50 × 0.45, 0.55 × 0.50)

 D´ = 0.175 / min(0.225, 0.275)

 D´ = 0.175 / 0.225

 D´ = 0.777...

This value is not very high, and would fail the “block” defi nition found 
in the next section.

Sorted 
(for easier 
counting)

C C

C C

C C

C C

C C

C C

C C

C C

C C

C G

A G

A G

A G

A G

A G

A G

A G

A G

A C

A C
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4.6.2 Haplotype Blocks

Studying populations tends to be diffi cult because of the amount of 
diversity found in the data. In the course of studying ld data from a 
group of individuals for connections to Crohn’s disease [Daly et al, 2001 
and Rioux et al, 2001], the data was found to be more structured than 
previously thought, showing a distinct pattern:

The results show a picture of discrete haplotype blocks (of tens to 
hundreds of kilobases), each with limited diversity punctuated by 
apparent sites of recombination.

daly, 2001

The paper was included the following diagram (reproduced here in its 
entirety) to demonstrate how the block structure worked with the ibd5 
data set studied for the Crohn’s disease research:
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The fi rst column shows a block made of ggacaacc, and a second 
variation of exactly the opposite letters, aattcgtg. By matching the 
red color of this text against the percentages shown lower, it can be 
seen that the fi rst combination appears in 76% and 18% (respectively) 
of the individuals studied. 

Simply put, the blocks are constructed by fi nding spans of markers that 
are in “strong” ld, meaning a series of snps where values of D´ are 
consistently above a threshold, in the original case, values above 0.8. 
Series of markers with D´ greater than 0.8 were added to a list, then 
sorted to find subgroups. This method, referred to as fi nding a “strong 
spine of ld” provided a means to find areas that where the signal was 
especially strong, but proved too rigid for minor fluctuations that might 
cause D´ to dip slightly lower. 

The block method was completed in greater detail for [Gabriel et al, 
2002], which presented a slightly more refined version of the block algo-
rithm developed by S. Schaffner. This took into additional parameters of 
a confi dence interval and a LOD score. This defi nition uses a combina-
tion of the parameters to produce a more robust characterization of the 
block structure in a region.

In addition, a draft version of the Gabriel paper included another pos-
sible representation of block data (shown above), which used a series of 
rectangles that spanned along the block boundaries, where the height 
of each correlated to the percentage of individuals with that block struc-
ture. This presents an interesting starting point for a more qualitative 
representation of the data, where a glance provides the viewer with an 
immediate overall picture of the data set, without requiring additional 
study of percentages or other notation in a table.
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4.6.3 HaploView

The study of haplotype blocks were the basis for the development of a 
software project from Daly’s lab titled “HaploView,” which can be used 
to examine haplotype data in a similar manner. A screen shot from its 
initial release appears below:

The large triangular plot shows the values for D´, each snp compared 
against the others. The inset diagram are the haplotype blocks, calcu-
lated via a menu option that runs one of the algorithms described in the 
previous section. 

The interface was built more of necessity as a step towards an end-user 
tool—a means to combine several of the analysis tools that were in use 
for the two publications and other research and was beginning to infl u-
ence other current projects. 
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As a be further enhanced through additional visual refi nement that 
would place more focus on the data and improve its readability. 

The coloring of the D´ plot provides a useful qualitative understanding 
of what’s inside the data set. The reading of markers and their individ-
ual location is fairly clear (the diagonal line with others connected to it). 
The individual D´ readings are perhaps the most diffi cult to understand. 
Part of this is that such a small font size is required to fi t three numbers 
and a decimal in a small space. This becomes especially problematic 
when dealing with large data sets, such as the ibd5 data, that includes 
more than a hundred markers instead of the fourteen shown in the 
sample image at the left. 

The inset block diagram is useful for its simplicity, but could be clearer 
from an initial glance. Part of the problem is that numbers, mostly of 
identical size are used for many different kinds of features: percentages, 
weights, marker numbers, and the 1, 2, 3, 4 (representing a, c, g and 
t) for the individual genotypes themselves. A well designed diagram 
provides visual cues for ways to ‘learn’ the image. Applying such rea-
soning in this image means that numbers should either be used less or  
differentiate themselves better so that the intention is clearer. 

The red colored numbers at the top are used to signify ‘tag’ snps, 
markers that can be used to uniquely identify the block, even in absence 
of the others. This feature is extremely useful because just that small 
number of such snps need to be typed, and the others guessed, with 
a signifi cant degree of accuracy. A red coloring is poorly chosen as it 
more commonly represents an error or some other type of problem, as 
opposed to highlighting the most useful of the information. 

At the bottom of the screen is an additional device to both show the 
block ranges and manually modify them. This is disengaged from the 
other parts of the interface, making it confusing to understand what 
part of the data it relates to; particularly when all aspects of the data 
being shown have a strong relationship to one another.
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4.6.4 Redesign of HaploView

The design of these diagrams was fi rst developed manually to work out 
the details, but in interest of seeing them implemented, it was clear that 
HaploView needed to be modifi ed directly in order to demonstrate the 
improvements in practice. Images of the redesigned version are seen 
on this page and the page following. The redesigned version was even-
tually used as the base for a subsequence ‘version 2.0’ of the program, 
which has since been released to the public and is distributed as one of 
the analysis tools for the HapMap [www.hapmap.org] project.

Since the values for D´ range from 0.00 to 1.00, in the following rede-
sign they are multiplied by 100. Through a glance, it’s easy to see where 
numbers are large and small (one, two, or three digits) 

Next, values of 100 are not shown, reducing clutter in the image. Very 
little is lost by not showing the 100s (or 1.00 values) since they already 
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have the strongest coloring, and the absence of a number is suffi ciently 
striking.

The plot is rotated 45º, to better align with the more familiar horizontal 
ordering of sequence data with which it is associated. The modifi ed 
orientation is commonly employed in other uses of this diagram. 

A small band is used to show the row of sequence data, which is slightly 
smaller than the long line used in the original image. With the markers 
slightly closer together on the line, it’s easier to compare their relative 
positions.

The rotation also helps the placement of the marker number and titles 
to be less ambiguous. In the original image, the markers sit at the end 
of the row, and there is some confusion for an untrained viewer as to 
whether the markers are connected to either the row or the column.

The coloring in the redesign is toned down slightly, with a slightly 
deeper red color to make the colors slightly more ‘natural’ (more on 
this in the color subsection of the ‘process’ chapter). More consid-
eration could be given to color in this image, where in some cases, 
slightly blueish colors are used for outlaying data points. Because the 
image shows not just D´ but is also mixed with the LOD score. 

With the redesigned version, the image’s size can be made much 
smaller than the previous image, while still retaining far more readabil-
ity. While many of these features are small cosmetic fi xes, these become 
increasingly important when considering a much larger data set. The 
contribution of the individual fi xes would be magnifi ed when consider-
ing a data set with several hundred markers.

In addition, the interface was modifi ed to use a series of tabbed panels, 
to further convey a sense of multiple ‘views’ of the same data.
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The second tabbed panel of the interface shows the block diagram. 

In order to help the user differentiate between multiple types of data in 
the image (which were previously all numeric), the 1-4 numbering of the 
genotypes are replaced instead with the letters they represent, reducing 
the overall number count. 

The percentages, since all are less that 1.0, have their decimal place 
removed, and are shown in a gray color because they are a secondary 
level of information in comparison to the genotypes. 

The two percentages between the blocks (the multi-allelic D´) are shown 
in black so that it’s clear they’re different from the other percentages. 
The box around them is removed because it was unnecessary, and 
made the numbers more diffi cult to read.
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The markers across the top are shown with a smaller font, and padded 
with zeroes so that a change from single to multiple digit marker num-
bers (from 9 to 10) doesn’t distract by attracting attention to itself. 

The tag snps in the original image were shown in red, and instead 
shown with a small triangle glyph that gives a better feeling of ‘tagging’, 
rather than the red coloring which might be used to imply a ‘problem’ 
with the snps.

Towards the bottom of the display, the user can modify the parameters 
for how the image is drawn, in order to change the criteria for what 
should be drawn as a thick line, or as a thin line, between the blocks 
themselves. 

Relating the new software back to the original process, this redesign 
covers the mining, refi nement, and interaction steps. The changes to 
the mining step were improvements to the algorithms used by the 
program for its calculations, to make them run more quickly for the 
interface that was now more interactive. 

The interaction step involves re-working of the program to clarify how 
data is used. Through changes to the interface layout (and internal 
features like automatically loading additional ‘support’ data fi les), the 
number of menu options was decreased as well, in order to make the 
program easier to learn and therefore its feature set more clear.

The refi nement step was discussed at length already, and results in 
a clearer, more compact way of looking at the data, making it easier 
to study larger data sets without the appearance becoming too over-
whelming.

acquire parse mine

improved
algorithm speed

for interactive
display

represent interact

improve
coloring

and layout
for clarity

tabs provide
multiple

views onto 
identical data
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4.6.5 ld Units

Another means of analysis for identical data is a system of ld “units” 
proposed in [Zhang et al, 2002]. The system relies on similar mathemat-
ics as other tests of Linkage Disequilibrium, and provides an alternate 
perspective that would appear to support the “haplotype block” model 
described in section 4.6.2. 

Shown above is a plot of ld Units versus distance along a chromosome 
(in kilobases, or thousands of letters of code) for the ibd5 data set 
used depicted by the diagram in section 4.6.2 and duplicated here:

A rough correlation can be seen between the stair-stepping of the ldu 
plot versus the positions and lengths of the individual blocks. This is 
examined further in the next section.
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4.7 Combination

The goal for this project was to develop a single software piece that 
combines aspects of many of the preceding analysis and visualization 
tools for haplotype and ld data. By mixing the methods in an inter-
active application, one can compare how each of them relate to one 
another in a way that maintains context between each, and serves as a 
useful tool for comparison.

The diagram below depicts the block structure for a section of 5q31 
from [Daly, 2001] for 103 snps in a population of around 500 individu-
als. The colors in each row depict one of (only) two variations possible 
for each snp, the most common in dark red, less common in a paler 
color. At the bottom of each column, a category for those variations 
occurring in less than 5% of the population. At a glance, this diagram 
can be used to quickly discern the general structure of the population 
in question, with roughly 70% of those studied exhibiting the haplotype 
block shown in the fi rst column, and others that continue towards the 
right. Such an image is used in contrast to simply showing a chart with 
percentages, which requires the viewer to consider the relative impor-
tance of each percentage, rather than simply “seeing” it. Because size 
information can be processed pre-attentively (described in section 3.1), 
the mind processes the basic structure of the diagram before conscious 
thought is given to it. 

One diffi culty, however is that the diagram above is shown with each 
snp having a width equal to the distance to the next snp, causing 
markers that are close together to be lost, and the frequency of transi-
tions between each block (the gray bars) predominating, when they’re 
only secondary information. 
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An alternative approach is to give each snp (and each transition 
between the blocks) equal spacing, while maintaining a connection to 
the “real” scale using lines at the bottom of the image:

This version of the graphic can be more informative, and via an interac-
tive software, this transition can be made dynamically, triggered by a 
single command, allowing the viewer to rapidly compare between the 
two without losing context.

Some fi nd the block defi nition controversial [Couzin, 2002], so the use 
of an interactive software program that allows one to modify the param-
eters of the mathematics used to set boundaries on the blocks helps 
reinforce the notion that the blocks are themselves not meant as rigidly 
as might be implied by their name. For instance, an alteration to the 
parameters of the block defi nition produces the following:

a view that shows wider block groupings. Moving the parameters in the 
opposite direction would produce a far more mixed picture than the 
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original. This method of directly manipulating the values helps rein-
force for the user how the algorithm itself works. The rapid feedback 
of simply manipulating the cutoff rate as an on-screen slider allows 
changes to be made in a way that is non-destructive, allowing the viewer 
to test different values but easily return to a previous state by a ‘reset’ 
function.

As another alternative, the block diagram can be shown in 3d, where 
each block offsets slightly in the z-axis, so that the lines depicting the 
transitions between blocks can be seen more clearly:

The view helps expose the transitions between blocks that are imme-
diately adjacent one another. A “false” 3d isometric projection is 
employed that allows the data to be shown while preserving the linear 
scaling of the nucleotide scale in the horizontal axis. 

However, it is likely placing too much emphasis on a few lost transitions 
to assign an additional spatial dimension to them. To make better use 
of the z-axis, the software can instead superimpose the ldu plot from 
the previous section, mixing the block diagram with an additional level 
of confi rmation for the block structure. This works well because the stair 
stepping seen in the ldu map is reminiscent of the block structure 
shown above. When the user enables this mode, the software slowly 
moves each bar to its new position, so that the transition can be seen. 
An additional keypress moves back to the original layout so that the two 
views can quickly be compared.
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The user can easily transition between each type of view, enabling or 
disabling the three dimensional view if not needed, or modifying the 
block defi nition as appropriate, to see how it might match the ld map. 
Viewing the block image from the top will correspond exactly to the 
ldu plot, which can be seen by rotating the diagram in the software:

This type of exploration provides many different perspectives into the 
data, relying on the fact that users may have different goals in mind 
when observing the data, and personal preferences as to how they 
prefer to see the data represented.

To this end, an additional display can be added which simply shows 
the raw letters of the data and the percentage for each, the quantitative 
description to what’s seen in the more qualitative visual block diagram:
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The software is built to morph between the representations, providing a 
tight coupling between the qualitative—useful for an initial impression 
and getting a “feel” for that data, with the quantitative—necessary for 
determining specifi c frequencies of haplotypes of interest for specifi c 
study.

Additional perspectives on this data can be achieved through other 
user interaction, clicking on a particular block varies the line weights of 
the transitions to show how many of the transitions are related to the 
highlighted block, a dynamic version of the bifurcation plots that were 
discussed back in section 4.5.

Clicking an individual SNP shows the degree of linkage (D´) relative to 
every other SNP as a line graph across the top: 
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From actual snp positions to evenly-spaced positions From 2d to 3d, to emphasize transitions betweeen blocks
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View from above reveals ldu plot in 2d Quantitative view with exact values and the transition back
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This provides a far more compact view than a full D´plot, which takes 
up far too much space for the amount of information that can usefully 
be extracted from it.

Another option allows the user to switch between populations (i.e. 
affected versus unaffected individuals), showing how the frequency of 
particular haplotypes increases or decreases.

The many dimensions in genetic variation data necessitate multiple per-
spectives for how it is viewed, and an interactive software visualization 
provides a means to transition between these views in an informative 
manner, showing how the many views are related, yet at the same time 
highlight different aspects of the data set.

Relating back to the process diagram, this project shows a broader set 
of the steps in use. For interaction, the application makes considerable 
use of transitions between its multiple states. In terms of refi nement, 
a number of means with which to expand and compress data in spatial 
terms are employed. The representation provides several modes of dis-
play. The mining and fi ltering steps allow different data sets to be read, 
or parameters of the algorithm to be modifi ed, presenting the results of 
the modifi cation to the user in real time. 
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5 Process

This chapter describes the process of Computational Information 
Design in greater detail. For each step, the goal is to provide an intro-
ductory (though hardly exhaustive) reference to the fi eld behind it, as 
each step has its own considerable background. The intent of Compu-
tational Information Design is not to make a inter-disciplinary fi eld, but 
rather that single individuals should be able to address the spectrum of 
issues presented—the goal is to understand data, so one needs to be 
familiar with the issues in handling data from start to fi nish. 

Consolidation often occurs when an established set of fi elds with their 
own considerable background meet a technological shift. The combina-
tion of an affordable laser printer, scalable font technology, and page 
layout software gave rise to desktop publishing in the mid 1980s. This 
collapsed the role of the many practitioners required in publishing, 
making it possible that a single individual could (from their “desktop”) 
write, layout, print and distribute a printed artifact such as a fl yer or 
a book. Previously such tasks were left to a writer to produce the text, 
a graphic designer to arrange it on a page, a person to set the type, 
another to photograph it for printing, produce negatives, then positives, 
make printing plates, and fi nally print the fi nished product on a printing 
press. The process was tedious and costly.

The combination of technology and tools that resulted in desktop 
publishing subsequently created an opening that led to an entirely 
separate process that focussed on the act of publishing, rather than on 
the individual tasks (layout, typesetting, printing) involved. It also fi lled 
a signifi cant need by making information easier to disseminate and 
publish. Of course desktop publishing did not replace traditional pub-
lishing, rather it both brought publishing to a wider audience on the low 
end, and revolutionized the process on the high end, making it far more 
effi cient and fl exible. 

acquire parse mine represent interact
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For Computational Information Design, a history has been established 
(as set out in the third chapter of this thesis) amongst a range of fi elds, 
some more traditional like mathematics and statistics, others more 
recent like Information Visualization and Human-Computer Interaction. 
The range of work, by the vlw, and other research laboratories and 
institutions, point to a next step for the handling of data. 

As a technological enabler, the availability of extremely powerful, and 
surprisingly inexpensive computer hardware with advanced graphic 
capabilities (driven by the consumer push for internet access and the 
gaming industry, respectively) puts the ability to build this work in the 
hands of a far wider audience.

As a further enabler, the Processing software development tool has been 
created as a step to bring development of visually-oriented software 
to a wider audience. While the requirement to write software is still 
considerable (and thus is not necessarily expected to lead to the sort of 
“revolution” characterized by desktop publishing), it provides an initial 
bridge that has shown early signs of success—thousands of developers 
and hundreds of projects being developed by the community surround-
ing it. 

Not unique to this author, the process is also largely an attempt to 
codify what is being addressed by many dynamic information visual-
ization projects, while addressing the gaps that exist in many of these 
implementations. Individuals and laboratories have addressed all or 
part of this process in these works, but as yet, little attempt has been 
made to teach it as a whole. This leaves the ability to build such works 
in the hands of a small number of practitioners who have fi gured it out 
on their own, while individuals in the larger design or computer science 
communities are often left perplexed at how to begin. 

For these reasons, the goal of this thesis has been to demonstrate the 
use of such a process in basic (chapter two) and advanced (chapter 
four) settings, explain it for a wider audience (this chapter) and then 
make available a tool to make the process easier (chapter six). 
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5.1 what is the question?

As machines have ever-increased the capacity with which we can create 
(through measurements and sampling) and store data, it becomes 
easier to disassociate the data from the reason for which it was origi-
nally collected. This leads to the all too often situation where visualiza-
tion problems are approached from the standpoint of “there is so much 
data, how do we understand it?” 

As a contrast, one might consider subway maps, which are abstracted 
from the complex shape of the city, and are instead focussed on the 
goal of the rider, to get from one place to the next. By limiting the detail 
of each shape, turn, and geographical formation, this complex data set 
is reduced to answering the question of the rider: “How do I get from 
point A to point B?”

The system of subway maps was invented by Harry Beck in the 1930s 
who redesigned the map of the London Underground [Garland, 1994]. 
Inspired by the layout of circuit boards, the map simplifi ed the compli-
cated tube system to a series of vertical, horizontal, and 45º diagonal 
lines. While preserving as much of the terrain as possible, the map 
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shows only the connections between stations, as that is the only infor-
mation usable for the rider in making the decision of their path. 

In addressing data problems, the more specifi c the question can be 
made, the more specifi c and clear the visual result. When questions are 
scoped broadly, as in “Exploratory Data Analysis” tasks, the answers 
themselves will be broad and often geared towards those who are them-
selves versed in the data. But too many data problems are placed in 
this category simply because the data collected is overwhelming, even 
though the types of results being sought, or questions being answered, 
are themselves far more specifi c. 

Often, less detail will actually convey more information, because the 
inclusion of overly-specifi c details cause the viewer to disregard the 
image because of its complexity. Consider a weather map, with curved 
bands of temperatures across the country. Rather than each of these 
bands having a detailed edge, their specifi city is tied to conveying a 
broader pattern in data that is itself often subject to later be found inac-
curate. 

It is a somewhat jocular endeavor to boast of how many gigabytes, 
terabytes or petabytes of data one has collected and how diffi cult the 
analysis will be. But the question needs to be asked, why have they been 
collected? More data is not implicitly better, and often serves to simply 
confuse the situation. Just because it can be measured doesn’t mean it 
should. 

The same holds for the many “dimensions” that are found in data 
sets. Web site traffi c statistics have many dimensions: ip address, date, 
time of day, page visited, previous page visited, result code, browser, 
machine type, and so on. While each of these might be examined in 
turn, they relate to distinct questions. Because the question might be 
“how many people visited page x over the last three months, and how 
has that changed month over month,” only a few of the variables are 
required to answer that question, rather than a burdensome multi-
dimensional space that maps the many points of information. 

The focus should be on what is the smallest amount of data that can be 
collected, or represented in the fi nal image, to convey something mean-
ingful about the contents of the data set. Like a clear narrative structure 
in a novel or a well orated lecture, this type of abstraction would be 
something to boast about. A focus on the question helps defi ne what 
that minimum requirements are. 
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5.2 acquire

The fi rst step of the process is about how the data is fi rst retrieved 
(where does it come from?) and the most basic aspects of how it is 
initially fi ltered. Some typical kinds of data sources:

analog signal – an analog signal is simply a changing voltage, 
which is “digitized” by an analog-to-digital converter (adc) into 
a series of discrete numbers. For instance, the waveforms that 
make up the audio on a compact disc are sampled into values 
that range from 0 to 65535, meaning that 65535 is the highest 
peak of the wave, and zero is the lowest. A value halfway between 
those two numbers is silence. There are 44,100 such levels for 
each second of audio, and the numbers are stored as binary on 
the disc. 

The numbering of 0 to 65535 is because the data is stored as two 
bytes, or 16 bits that can be either zero or one. Sixteen bits can 
represented 2^16 numbers, which is 65536 total values (when 
counting from one, but 65535 because electronics count from 
zero).

fi le on a disk – this is perhaps the simplest type of data to acquire, 
since fi les exist only to be read and written. Files are either text 
(such as plain text documents or html fi les) and human read-
able, or binary (such as jpeg and gif image fi les) and generally 
only machine readable. Making sense of such data is described in 
the section that follows.

stream from a network – it is common for live data to be 
“streamed” directly from a network server. Common examples 
are the raw data from news feeds (generally text data) or live 
video and audio. The type of acquisition shifts because it is often 
unclear how much data is available, or it represents a continu-
ously updating set of values, rather than something more fi xed 
like a fi le on a disk.

relational database – A relational database is simply a large 
number of ‘tables’, which are themselves just rows of data with 
column headings. For instance, a table for addresses might have 
columns for fi rst and last name, street, city, state, and zip. The 
database is accessed via a “driver” that handles the “stream from 
a network” style data. The database is fi rst given a query, typically 
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a command in a language called sql, (short for Structured Query 
Language) for example: 

SELECT * FROM addresses WHERE firstname IS joe

This query would grab a list of all the rows in the “addresses” 
table where “Joe” was found in the column named “fi rstname.” 
Despite their important sounding name, at a fundamental level, 
databases are extraordinarily simple. The role of a database is to 
make queries like this one, or others that can easily get far more 
complicated run exceptionally fast when run on enormous tables 
with many, many rows of data (i.e. a list of 10 million customers).

The pitfall of databases in interactive environments is that it’s 
not always easy to have data from them update automatically. 
Because they are fundamentally a means to “pull” data (rather 
than having it pushed continuously, like a network stream) 
software that uses a database will have to hit the database with 
a new query each time more or a different set of data is needed, 
which can easily cause a lag in an interface (several steps later 
in the process) or be prohibitively cumbersome for the system 
(i.e. thousands of people using an interactive application that’s 
connected to a database and running a new query each time the 
mouse is dragged to change values in a scroll bar). 

an entire fi eld – The data acquisition quickly becomes its own 
fi eld, regarding how information can be obtained and gleaned 
from a wide variety of sources, before they’re even codifi ed into a 
manageable digital format. This is a frequent problem concerning 
how relevant data is recorded and used. For example, how does 
one quantify the ‘data’ from an hour-long meeting, that involved 
a verbal discussion, drawings on a whiteboard, and note-taking 
done by individual participants?

In terms of Computational Information Design, the acquisition step is 
perhaps the most straightforward, however it’s important to understand 
how sources of data work (such as the distinction between text and 
binary data) , and their limitations (how common relational database 
can and cannot be used). 
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5.3 parse

This step looks at converting a raw stream of data into useful portions 
of content. The data might fi rst be pre-fi ltered, and is later parsed into 
structures usable by a program. Almost always, data boils down to just 
lists (one dimensional sets), matrices (two dimensional tables, like a 
spreadsheet), or graphs (sometimes trees, or individual ‘nodes’ of data 
and sets of ‘edges’ that describe connections between them). Strictly 
speaking, a matrix can be used to represent a list, or graphs can repre-
sent the previous two, but the over-abstraction isn’t useful.

5.3.1 Pre-fi lter

Pre-fi ltering are the most basic operations on the binary data of the 
previous step. It is not the more complicated content-oriented fi ltering 
that comes from in the “mine” section of the next step of the process, 
but rather involves issues of synchronization to fi nd the content in a 
data set. 

offset – fi nding appropriate offset and subset of data in a binary 
stream. Often, a stream of data will have a “synchronization” 
signal that signifi es the beginning of a new set of data. 

For instance, a television signal is a one-dimensional stream of 
information, an analog wave whose intensities determine the 
intensity of each pixel on the television screen from left to right, 
top to bottom. For each line of the image, the signal has a spe-
cifi c up/down change that determines the end of one line of the 
image and the beginning of the next. Another signal marks the 
beginning of a new screen of data. When fi rst turned on, a televi-
sion receiver will wait until the fi rst time it sees the signal’s wave 
make the pattern for a new screen, and then begin reading and 
drawing to the screen from that point. 

An offset might also be used in a similar way for a binary stream, 
so that some initial data is ignored, perhaps until a fl ag or marker 
is seen that quantifi es a beginning point. 

fi lter – a “low-pass” fi lter might be placed on the waveform to 
steady a bad signal, removing small deviations from the signal 
(“high frequency” data, passing only the “low”) to clean it. 
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unpack/decompress – unpacking involves expanding data that may 
have been compressed with regards to its information content. 
For instance, it’s more compact to store an image on disk by 
saying that there are a stream of 500 pixels of red, than to write 
out “red” 500 times. This is the method of simple compression 
algorithms like rle, which stands for run-length encoding. 

Others, such as gzip, pack data using slightly more complicated 
methods [www.gzip.org]. Unlike gzip which can act on a stream 
of data as it is emitted, table-based compression algorithms like 
lzw, (used for gif images) fi rst create a table of features in the 
data set that appear most often, rank them, and then assign the 
smallest possible amount of bits to the most common entries in 
the table. 

decrypt – decryption involves using a mathematical key as a way 
to decode a data set, usually a very large number multiplied or 
divided by another. 

Perhaps the simplest form of encryption/decryption is rot13 
[demonstration at www.rot13.com], which simply rotates letters by 
13 places (i.e. A becomes N, B becomes O, ... , and so on until N 
also becomes A). 

More feasible forms of encryption include ssl, widely used on 
the web to keep credit card information safe when making online 
purchases [www.netscape.com/eng/ssl3]. It relies on large number 
‘keys’ (arbitrated between the customer and merchant’s comput-
ers) to encode data. 
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5.3.2 Parsing Tasks

The parsing step involves breaking the data into known structures that 
can be manipulated by software. The result of this step is a set of data 
structures in memory. For this step in the zipdecode example in chapter 
two, this distilled the 45,000 entries in the zip code table into individual 
“records” stored in memory. 

5.3.2.1 Bits with periodicity

This category is for situations where bits are broken into a linear stream 
at periodic intervals.

binary data – list of binary values that encode numbers. For 
instance, a temperature sensor connected to a computer might 
send a byte for its current reading each time it changes. 

On the other hand, this could be a fi le fi lled with four byte 
numbers that encode a series of readings from a more sensitive 
device. Each byte is made up of a series of bits representing 27 
down to 20, so for the byte 10110001, that looks like:

 1 0 1 1 0 0 0 1
  27 26 25 24 23 22 21 20

  128 64 32 16 8 4 2 1

The second row shows the power of 2 for each bit, and below that 
is the value for that power of two. Each bit set to one has its value 
added, so this byte represents:

  27 + 25 + 24 + 20  = 128 + 32 + 16 + 1 = 177

Because a byte can only signify a number from 0..255, several 
bytes can be used together through bit shifting. Two bytes used 
together can represent 216 possible values (0..65535). This is done 
by making the fi rst byte signify 215 down to 28, and then adding 
that number to the second byte, which represents 27 down to 
20. More bytes can be added in the same manner, on current 
machines, four bytes will be used to represent an integer number. 
In addition, the left most bit is sometimes used to signify the 
‘sign’ of the number, so if the bit in the 27 place is set, the 
number is negative. This will provide numbers from -128 to 127. 
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interleaved binary data – this is often used for image data, where 
a series of bytes will depict the red, green, and blue values for a 
pixel. The fi rst byte might be a value from 0..255 for red, followed 
by one for green, and another for blue. Images are commonly 
stored in memory as 32-bit integers, where the fourth byte is 
either a value for alpha, or left empty because it’s more effi cient 
to deal with 32 bit numbers than 24 bit numbers (the binary 
design of computers makes powers of 2 most effi cient)

windowed or periodic data – a windowed data set might be a signal 
that has a particular periodicity, and these “frames” might be 
compared against one another for changes. 

image or scanline – the two dimensional data of an image is 
unwound into a single stream of data, the width of each line 
being called the ‘scanline’, similar to the example of the television 
signal. 

5.3.2.2 Text characters

Text characters can take a variety of forms, whether separated by a 
simple delimiter like a comma (or a tab, as in the zipdecode example) 
or must be parsed by a markup language or something more advanced 
like the grammars used to parse the text of a program.

delimited text – plain text lines. One of three types is most preva-
lent. First, whitespace (a tab or space character) might be used 
as a separator:

 apple bear cat potato tomato

Another common format is csv, or comma separated values, 
which might be used to save a spreadsheet, and for each row, 
uses a comma to separate the columns of data (a column that 
has a comma as data is placed in quotes):

 apple, bear, cat, “worcester, ma”

Finally, text fi les are sometimes fi xed width, where each column 
is separated by padded spacing, so that new columns of data 
always start at specifi c positions. This is becoming less common, 
but was used heavily in older formats and computer systems 
because programming languages of the time (such as Fortran) 
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were better at splitting data at specifi c positions, rather than on 
specifi c characters:

 12345678901234567890123456790
 apple       1456990    3492
 bear           3949      22
 cat           33923     619

In this example, fi rst column is from character 1 through 12, the 
second is from 13 through 19, and the fi nal is from 20 through 27. 
A Fortran programmer couldn’t be happier.

varied delimiters – delimiters are often more complicated, so 
regular expressions are often employed. Regular expressions (or 
regexp) are a way to match text that might vary in length or have 
delimiters that change. Regexp commingle special sequences like 
\w, which means match any ‘worD´ character (the letters a-z and 
A-Z) or \d which means any numeric digit (0-9). Next, the modi-
fi er + can signify “one or more” or * might signify “zero or more” 
For instance:

\w+\s\w+

means to match any number of “word” characters, followed by 
some kind of whitespace (tab or space char), then another series 
of one or more word characters. Regexp can become very com-
plex, for instance, the following is a single line of text is taken 
from a web server activity log:

mail.kpam.com - - [22/Apr/2004:18:56:49 -0400] “GET /people/pcho/
typemenot/ HTTP/1.1” 200 603 “http://dir.yahoo.com/Arts/Design_
Arts/Graphic_Design/Typography/” “Mozilla/5.0 (Macintosh; U; PPC; 

en-US; rv:1.0.2) Gecko/20030208 Netscape/7.02”

to parse this into a series of useful pieces (using the Perl pro-
gramming language), the following regexp is used:

^(\S+) (\S+) (\S+) \[(\d+)\/(\w+)\/(\d+):(\d+):(\d+):(\d+) 

([^\]]+)\] “(\S+) (.*?) (\S+)” (\S+) (\S+) “(\S+)” “(.*)”$

Internal to the computer, regexps are compiled programs and can 
run surprisingly fast. 
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text markup languages – while regexps are useful for single 
phrases or lines of data, tagged formats, such as html, are 
popular for whole documents. As evidenced by the enormous 
amount of interest in formats like xml, these can be useful way 
to tag data to make them easy to exchange. 

bnf grammars – a step past regexps and markup languages are 
full bnf grammars, most commonly used for the parsing of 
programming languages, and also useful in protocol documents 
(i.e. the documentation for the http standard that describes 
how communication works between web browsers and web serv-
ers) because of their specifi city. A bnf grammar, which is human 
readable and editable, is compiled to program code by a parser 
generator, that makes far less intelligible, but very fast-running 
code. An example of a (not very strict) grammar:

       word           = token | quoted-string

       token          = 1*<any CHAR except CTLs or tspecials>

       tspecials      = “(“ | “)” | “<” | “>” | “@”
                      | “,” | “;” | “:” | “\” | <”>
                      | “/” | “[“ | “]” | “?” | “=”
                      | “{“ | “}” | SP | HT
       quoted-string  = ( <”> *(qdtext) <”> )

       qdtext         = <any CHAR except <”> and CTLs,
                        but including LWS>

As can be seen in this example, the grammar is built all the way 
up from small components like characters, and into more com-
plicated structures like a quoted string.

5.3.2.3 Structured data

Structures and hierarchies refer to the common situation of a data set 
having a hierarchical structure of elements within elements, or elements 
that have pointers to one another. 

structured decoder – many kinds of data have a hierarchical format 
of objects within objects. For instance, a hard disk is made up of 
a partition table that describes its hierarchy, followed by a series of 
partitions that show up as individual drives on a user’s machine. 
Each partition has a fi le system, which describes how fi les are laid 
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out on the disk and where they are located physically on the disk. 
In the case of a Mac OS fi le system, the fi les are made up of two 
forks, one for actual data and the other for resources, or meta-
data. The resource fork itself has a table that describes what kind 
of resources it contains and where they’re located within the fi le. 
Each resource has its own structure that provide still more tables 
within tables. For highly structured data, these can be dealt with 
in a very generic way (where most things are tables or lists or 
values, etc). 

structured packing – data might be packed into a stream to make 
it more condensed, though it’s not necessarily considered 
compression (described in the ‘acquire’ section). One case is 
Postscript fonts, where an encoding called CharStrings is used to 
convert individual commands for drawing a letter (like lineto and 
moveto) into specifi c binary numbers, making the fi le easier for a 
program to parse (than plain text) and also more compact.

computational parsers – Non-uniform data structures require 
more logic than a simple description of hierarchy, or unpacking 
based on indices. These are dealt with by a program designed to 
understand the higher variability of the structure. No doubt some 
rules are employed, but they are implemented via a full program-
ming language because they are too complicated to abstract.
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5.4 fi lter

The fi ltering step handles preparing a relevant subset of the data to 
be considered by the user. It is strongly tied to the later ‘interact’ step, 
because the data of interest might change based on 

The fi lter used in the zipdecode example of chapter two was basic, 
removing cities and towns not a part of the contiguous 48 states. More 
advanced fi ltering can be seen in section 4.7, where the user is capable 
of swapping between a view of the “affected” versus “unaffected” 
individuals in the study, or a combination of both. Comparing what the 
data looks like for individuals that exhibit symptoms of the disease in 
question might reveal clues about 

In another case, the initial data set in question might be extremely large, 
another project, used more than a hundred regions of data (rather than 
the single ones shown in the chapter four examples) that were available 
as a single large data fi le. The fi ltering step in this case broke the data 
into its constituent regions so that they could be handled separately, or 
even re-exported based on a per-region basis, for use in tools that could 
only handle individual regions.

The fi ltering step sits in the middle of the process steps, the fi rst step 
that doesn’t handle the data in a completely “blind” fashion, but its 
methods are not as advanced as the statistics and mining methods of 
the step that follows.



101

5.5 mine

The name of this category is simply meant to cover everything from 
mathematics, to statistics, to more advanced data mining operations. 

5.5.1 Basic Math & Statistics

As described by the quote from John Tukey in chapter three, statistics is 
fundamentally about understanding the contents of data sets, to get an 
intuitive sense of what is represented by the numbers. Statistics provide 
an interpretation for the overall “shape” of data. Among the methods 
are sorting operations, distance metrics, standard deviation, and nor-
malization. 

Another important aspect of statistics is understanding the amount 
of coverage in a data set. A plot of even as many as 500 points across 
a grid of size 100 × 100 will still only cover 5% of the area. This small 
amount of coverage should be considered when trying to make the data 
set as compact as possible – for instance, it might be a clue that the 
grid of 100 × 100 might be a wasteful representation of the data. 

A selection of additional methods and their use:

max & min – simply calculating the highest and lowest value in a 
list of numbers (used in the zipdecode example to determine the 
ranges for latitude and longitude) 

median & mean – the median point is the very middle point of 
the data set. For a set of fi ve numbers, it is the third, regardless 
of its value. The mean, or average, is the sum of all the numbers 
divided by the count.

normalization – a basic normalization is to re-map a set of num-
bers to range from zero to one, making them easier to handle 
for subsequent calculations. In the zipdecode example, this was 
employed for latitude (and longitude). The span was calculated 
from the max and min:

 span = maxLatitude - minLatitude
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Then, each latitude was subtracted by the minimum value, and 
divided by the span, so each number would fall between zero and 
one:

 normalizedLat
n
 = (latitude

n
 – minLatitude) / span

Having done this, zooming calculations are simpler, or even 
without zoom, the y position of each point can be calculated by 
multiplying the number between zero and one by the height, 
producing a number between zero and the height.

variance – provides a measure of how numbers are distributed, 
the formula for variance:

 σ2 = Σ(x
i
 – mean)2 / n

Where n is the count of the numbers to be observed, and x
i
 is 

each number. The formula above simply means: 1) subtract a 
number in the list from the mean, and square the result. 2) divide 
that value by the count. 3) do this for each number in the list, and 
add them all together.

standard deviation – this is the square root of the variance, and 
it helps one to understand where numbers fall in the data set in 
question. The normal distribution looks like:

and the standard deviation provides a means to calculate where 
on the curve the number in question is located. 

sorting – generally speaking, types of sorts fall under three cat-
egories. First, based on simple numeric criteria (ascending or 
descending values), next alphabetical sorting of strings, or fi nally, 
based on a compare function, that might use each value as a 
lookup into a dictionary, and the results of the respective lookups 
are compared against one another. There are many methods 
for sorting, the most common software algorithm is QuickSort, 
which, as its name implies, is the fastest method for handling 



103

randomized data sets (perhaps oddly, it performs its worst when 
the data is too ordered). 

distance metrics – a distance metric is used to calculate the dis-
tance between two data points, or sometimes two vectors of data 
(where each ‘point’ might have multiple values). For instance, 
a distance metric is used in section 4.4 to calculate how similar 
each row of data is so that it can be clustered. A similarity matrix 
is also employed, which is a half-matrix of each row compared to 
the others (not unlike the D´ table). 

count unique instances – if column of data is made up of one of 
20 different words, a common task will be to make a list of all the 
words that are unique in the set, along with a list for how often 
each word appears.

5.5.2 Dimensional Measures & Transformations

The last sections consider methods commonly associated with data 
mining. Dimensional measures and transformations include methods 
for handling multidimensional data sets, such as principal components 
analysis, which is used to determine the most ‘important’ dimensions 
in a data set, or the fourier transform, used to break a signal into its 
component frequencies. 

principle components analysis – pca is a method from linear alge-
bra to decompose matrices that have many dimensions into a 
smaller number of dimensions by calculating which of the dimen-
sions in question are of greatest importance. 

multidimensional scaling – is similar to pca, but used when the 
data set looks like a Frank Gehry building. Rather than the single 
planar dimensions of pca, multidimensional scaling untangles 
data while still trying to maintain relevant distances between 
points.

fourier transform – the fourier transform converts data to fre-
quency space, or the inverse fourier transform (ift) can be used 
to transform it back. On a computer, the fast fourier transform, or 
fft is most commonly used, because it is far faster (remember 
QuickSort) than the mathematically intensive fourier. But this 
leads to a problem with fft, because the frequencies it calcu-
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lates are log-based, which is adequate for many situations but not 
all. Another alternative is the discrete fourier transform, or dft, 
in which specifi c (“discrete”) frequency bins are calculated.  

autocorrelogram – these are used in particular for audio applica-
tions, to show an additive time-lapse plot of how a fourier trans-
form of the data changes. 

5.5.3 Classifi cation, Scoring, & Search

Once the data has been fi t to a model and dimensionality has been 
determined, classifi cation might be used to group related elements. 
Clustering methods (such as k-means or self-organizing maps) exist to 
break a data set into hierarchies of related elements. Finally, evaluation 
metrics are considered, to determine how well the model fi ts the data, 
and whether it was a suffi cient predictor of organization.

clustering – used in section 4.4 to group similar rows of data 
together for easier comparison, or often in microarray experi-
ments [Eisen, et al 1998]. Several clustering methods exist, the 
method for that section was an algorithm called cast [Ben-Dor, 
et al. 1999] and another more popular method is called k-means.

probability – as demonstrated briefl y in the discussion of Linkage 
Disequilibrium in chapter four, probability can be used to esti-
mate information-rich areas in a data set.

self-organizing maps – Kohenen’s self-organizing maps are a 
another means of classifi cation, based on an iterative process 
of selection [for an introduction, see p.69 Fayyad, Grinstein, & 
Wierse. 2001]. 

dimensional reduction – Sammon dimensional reduction is an 
additional such method [for an introduction, see p.69 Fayyad, 
Grinstein, & Wierse. 2001]

scoring methods – a class of data mining methods for determina-
tion of “what’s interesting” in a data set.

search & optimization methods – another class of data mining 
methods, which focus on rapid search and analysis.
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5.6 represent

The fourth part of the process considers representation in its most 
basic forms. This is a laundry list of techniques, some of them older, 
like the bar graph invented by Playfair, or more recent, like parallel coor-
dinates. The visuals are themselves a catalog of starting points to be 
used by the designer when considering the data in question. The thesis 
will describe each of these techniques in turn, and how they apply to a 
variety of data types. The intent is that by this point, the designer has 
the appropriate means with which to choose what type of representa-
tion might be most appropriate, given how the data has been pulled 
apart in the fi rst three steps of the process.

5.6.1 Catalog of Common Representations

The choice of representation is based on what is the simplest possible 
form that conveys the most relevant aspects of the data set. 

table – the display of tables from a database or spreadsheet is 
the standard form for two dimensional quantitative data. Tables 
are useful for showing all the data, but when too many rows or 
columns are required they are quickly cumbersome. The inven-
tion of the spreadsheet (in the form of VisiCalc, invented by Dan 
Bricklin) in the very late 70s was a major invention that allowed 
users to show “sheets” of their data spread across multiple pages 
of printouts or on-screen. 

scatter plot – in one dimension, a scatter plot is a disconnected 
line graph with one axis as the point count. In two dimensions, it 
is a cloud of points with horizontal and vertical locations based 
on their values. These can be extended to three and more dimen-
sions by transforming down to the two dimensional plane (same 
as how 3d graphics map a spatial scene to the two dimensional 
plane of the monitor). More than two dimensions will require the 
ability to swap dimensions or rotate across dimensions to show 
how they relate to one another.

line graph – a series of points connected by lines
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bar graph – Playfair’s invention for showing series data (usually 
done with a line graph) where values were not connected to one 
another, or had missing data.

box plot – a two dimensional plot that shows a point and its fi rst 
(and sometimes second) standard deviation, a useful depic-
tion of the fact that data is often not simply discrete points, but 
ranges of likelihood. This was invented by John Tukey, more on 
his role in Exploratory Data Analysis is described in the third 
chapter.

physical map – ordering elements by physical location, such as 
the latitude and longitude points of the zipdecode example.

heat map – a map that uses color or some other feature to show 
an additional dimension, for instance a weather map depicting 
bands of temperature. 

matrix – any two dimensional set of numbers, colors, intensities, 
sized dots, or other glyphs. 

half matrix – where only half a matrix is shown, usually used for 
similarities, or where two items are being compared against one 
another (i.e. the D´ table). Only half the matrix is needed because 
it is the same when refl ected across its diagonal.
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tree – hierarchically ordered data connected by lines of branches.
Trees are very common because so many data sets have a hiear-
chic structure. However, even though the data is hieararchic, 
this is not the proper representation, because the understanding 
sought from the image is not associated with this hierarchy.

graph – a tree that has less order, and can connect back to itself. 
Rather than a pure hierarchy, it is a collection of nodes and 
branches that connect between them.

histogram – a bar chart that displays how many instances of each 
value on one axis is found. For example, used with a grayscal e 
image where the horizontal axis are possible color intensities 
(0..255) and the vertical is the number of times that each color is 
found in the image.

dendrogram – a stacked tree shown connected to points, where 
the height of the branches show an additional variable. Often 
used to depict the strength of clustering in a matrix.

parallel coordinates – used for multi-dimensional data, where verti-
cal bars represent each dimension. Each element of the data set 
has values for each dimension, which are shown as points along 
the vertical axis and then connected together.

radial parallel coordinates – like several superimposed star plots 
that show multiple records of data. 

star plots –similar to parallel coordinates, but with a single record 
of data where its points are shown radially.
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permutation matrix – Bertin’s sortable bar charts for the display of 
multi-dimensional data.

survey plot – popularized in the “Table Lens” project from Xerox 
parc [Rao and Card, 1994], these resemble series of bar graphs 
that can be sorted independently.

chernoff faces – a method for diagramming multi-dimensional 
data through the use of facial features. Chernoff’s idea [Chernoff, 
1977] was that because our visual system is particularly tuned to 
understanding and remembering human faces, that people would 
be able to more readily understand many more dimensions as 
mapped to a face than might be possible with other types of 
glyphs or diagrams.

rubber sheet – like a heat map, but used to map four or more 
dimensions, through the use of a colored, three dimensional 
surface. 

isosurfaces – maps of data that resemble topographic maps.

tree maps – fi rst popularized by Shneiderman in [Shneiderman, 
1992], and later used for Wattenberg’s successful “Map of the 
Market” that depicts a hierarchically ordered set of boxes within 
boxes for the sectors, and largest stocks in the market.

visual diff – a common differencing representation that shows two 
columns of text connected by lines to show where changes have 
been made between the two versions. 
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5.6.2 Regarding 3d and 2d Representations

When presented with a problem of many dimensions, an initial instinct 
is often to employ a three-dimensional view of the data. This is prob-
lematic for many reasons:

The plane of the computer screen is inherently 2d. The advan-
tage of truly three-dimensional objects is being able to look 
around them, see inside, etc. Most of these affordances are miss-
ing in screen-based representations.

Users tend to have a diffi cult time with understanding data in 
3d, because of their unfamiliarity with such representations. This 
was reportedly a problem that held back the wider adoption of 
Strausfeld’s Financial Viewpoints project. While it might be engag-
ing, we’re limited by our familiarity with two-dimensional com-
puter screens and printouts.

Because the number of dimensions being looked at is more like 
six, it’s often the case that additional confusions coming from a 
three-dimensional representation serve to only detract further.

Sometimes it makes more sense to make it easier to navigate 
between multiple two-dimensional planes of data that show mul-
tiple aspects. For instance, a Financial Viewpoints style representa-
tion that “locked” to each particular view.

Considerations for using three-dimensional representations:

Understand that the screen is not a 3d space, so the additional 
dimension should show data that can be occluded by other 
points that might be “in front” of it.

The use of subtle perpetual motion to rotate the representation 
can help the viewer identify the contents of the data set because 
this tends to construct a 3d image in one’s own mind.

Try to fl atten the dimensionality wherever possible. If the data 
is mostly two dimensions, with a couple of spikes in another 
dimension, those might be shown differently, but needn’t make 
the entire representation multiple dimensions to meet the lowest 
common denominator in the data set.
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5.7 refi ne

Even though data sets can be boiled down to simply lists, matrices 
(multi-dimensional lists), and trees (hierarchic lists), it is not suffi cient 
to simply assign a representation to a data set that it fi ts. Each of the 
tools from the previous step can be applied depending on what cat-
egory the data falls into, but it is the task of the designer to then pull 
out the interesting or relevant features from the data set by refi ning the 
basic representation through the use of visual design techniques. 

Graphic design skills provide useful fundamentals for the type of ques-
tions to be asked when seeking to communicate the content of a com-
plex data set. The thought processes ingrained in the visual designer, 
everything from “How can this be shown most cleanly, most clearly?” to 
more subjective “Why is that ugly and confusing?” are best suited to the 
goals of clearer communication.

Perhaps the best reference on visual refi nement as regards to data are 
Tufte’s series of books [Tufte 1983, 1990, 1997] that clearly make the 
case for a broad audience.

5.7.1 Contrast and Differentiation

The goal of information design is to show comparisons between ele-
ments. The comparisons can be highlighted through:

Contrast – Contrast is perhaps the most fundamental visual prop-
erty. This is because our visual system is tuned to fi nding con-
trasts, whether to understand where one object ends and another 
begins, or at a higher level, for decision-making processes. The 
pre-attentive features shown in section 3.1 are all means of con-
trast between visual elements. 

Hierarchy – Related to contrast is hierarchy, the means with 
which an order of importance between elements is established 
on a page. As is the case for writing, for instance, an informa-
tion graphic should provide narration about what is being 
represented, what it means, and reveal its details. Just as a topic 
sentence must be found in every paragraph, so should a graphic 
place emphasis on a list of its larger points, while de-emphasiz-
ing minor supporting points. 



111

Grouping – “Grouping is represented by objects that cluster 
or gravitate to each other, implying likeness or some common 
value or meaning. Grouping creates patterns.” [Christopher 
Pullman, private discussion] This can be as simple as two colors 
being used to show what objects are part of what group. A more 
sophisticated example is the redesign solution in section 4.4 that 
used a visual grouping of elements to highlight the similarities 
between objects, by providing a clearly delineated set of groups 
found within the data. At the same time, it also helps to highlight 
the differences, by placing broadly similar elements together, 
it also helps to highlight the differences, the minute changes 
between rows of data.

5.7.2 Visual Features for Differentiation

Size, color, and placement are some of the devices used by graphic 
designers to differentiate and provide contrast. This section describes 
their use and misuse. 

5.7.2.1 Size & Weight

It is important to pay careful attention to how the relative sizes of ele-
ments work with one another. Size is a powerful pre-attentive feature 
(see section 3.1) that can highlight or distract. 

The size or thickness of lines can often be used to show relative impor-
tance between two sets of values, or a thick line might be used to dif-
ferentiate from thinner lines beneath it that denote a grid used to show 
the scale of the fi gure. Using such a method to decrease the impact of 
the gridlines is important to placing the most prominence on “showing 
the data” [Tufte, 1990], rather than allowing the viewer to become dis-
tracted with data versus the design of the diagram itself. This can also 
be applied to lines used as borders around shapes, which are almost 
always extraneous additions. This is discussed at length in Tufte’s text, 
described as “reducing the amount of non-data ink,” a useful phrase 
that addresses a remarkably common issue when evaluating diagrams.
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5.7.2.2 Color

On the computer, color is a mixture of proportions of red, green, and 
blue components, collectively referred to as rgb. This is an artifact of 
how the color is generated on screen, where tiny elements of each are 
placed closely to give the illusion of color to the eye. A more intuitive, 
traditional model of color uses ranges of hue (or chroma), saturation, 
and value. When referring to color, what is usually meant is its hue, for 
instance orange or blue or violet. Saturation is the intensity or richness 
of the color, and value is the brightness, a range of white to black. 

Color is often employed as the most obvious means to denote between 
categories of data. Yet this quickly becomes problematic for several 
reasons. First, the human brain can only distinguish between and recall 
roughly fi ve separate colors [via Ware 2002], where the number of cate-
gories of data will more often than not exceed fi ve, leading to sets of ten 
or even twenty colors that are hardly distinguishable from one another. 

Second, overuse of color often leads to diagrams that use identical 
colors to depict values that are unrelated, for instance combining a full-
spectrum scale that shows “temperature” while also using fi ve colors 
(that can be found in the scale) to delineate physical boundaries to 
which the temperatures apply. 

Often, the output media may not support color, the majority of printing 
and copying devices still black and white. 

And fi nally there is the issue of color blindness, such as dichromatism, 
affecting approximately 8% of men and 1% of women, meaning that 
the colors are often likely to be perceived differently across the target 
audience. In the end, color is best used sparingly, and most diagrams 
should be made to work on their own in black and white, using color 
only to punctuate or support another feature that might be optional.

A paradox to the use of color is that in software, which makes available 
millions of colors to the user, the tendency, rather than a variety of sen-
sible colors, is to use the maximum value of “red” to produce a red, and 
zeroes for the other values. This produces a jarring non-natural looking 
color that easily distracts a viewer. A better method is to consider how 
colors are found in the natural world, where any colors are rarely if ever 
pure shades of color components, and instead subtle mixtures of the 
red, green, and blue (or hue, saturation and value under the alternate 
model). Sampling colors from a photograph, for instance, can produce 
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a set of colors that are already demonstrated to work together, along 
with many shades of each for highlights or secondary information. 

When many categories of data are to be considered, one might employ 
numbered annotations, or small symbols known as “glyphs” or “icons” 
instead of color. Even small pieces of text are often better than a dozen 
colors competing for the viewer’s attention. More often, consideration 
should be given to whether it is important enough to show every single 
category in the diagram, because the extreme variety will likely dominate 
the representation, clouding the communicative effect of other features 
that have greater importance (even if they are larger or more colorful). 
The quantity of identical elements is another signifi er of importance, 
because the brain is inclined to search for patterns and groupings in an 
image to quickly draw conclusions.

5.7.2.3 Placement

Placement conveys hierarchy by providing an ordering to elements, for 
instance, the way that the title is found at the top of every newspaper 
article. Contrast might be conveyed by placement through the use of 
a set of similarly placed elements and an outlier that is disconnected 
from the rest of the group. Grouping is the predominant use of place-
ment.

In addition to contrast, hierarchy, and grouping, the placement of ele-
ments also plays a role in how a diagram is read, with the majority of 
audiences reading left-to-right, top-to-bottom either natively, or at least 
being familiar with that mode for the context of scientifi c publications. 
Combined with size changes, the designer can “lead” the viewer’s eye 
around the diagram, not unlike how a narrative thread runs through a 
paper. The eye will begin with visually strong (large, colored, with promi-
nent placement) elements and then search for details among those less 
prominent.
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5.8 interact

Interaction methods involve either how the data interacts with itself on-
screen (the type of interactions investigated by the vlw), or how users 
can interact with and control the data representation, the latter being 
the fi eld of hci, or Human-Computer Interaction.

5.8.1 Data Self-Interaction

Basic layout rules might be simple connections between elements in 
the diagram (a rule to maintain left alignment between two objects) 
through more complicated design rules that use data tagged by its 
“importance” to achieve a continuously updating composition.

5.8.1.1 Basic layout rules

Some of the layout rules used in common practice, most based on 
straightforward algorithms:

connected elements – graphics that connect one element to 
another, i.e. a line connecting a box to a magnifi ed version of the 
same

spatial rules – items must fi t within a certain overall area – scale 
all elements to fi t a predefi ned space. For instance, line and page 
breaks, where at a certain width or height, a new line or new page 
is started.

proportional rules – this might control the even distribution of 
spacing between elements.
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jittering points – slight perturbation of data points to prevent 
occlusion, and show when points are stacked on top one another.

weighted scale & zoom – consideration of the optical effects of 
scaling. Through hinting, or other more advanced techniques like 
MetaFont or Multiple-Masters, typefaces at larger sizes typically 
show more detail and subtlety than when rendered at small sizes. 
This can be a powerful means to add more detail to a representa-
tion as the viewer looks closer.

label stacking – without adequate room for labels that would oth-
erwise occlude one another, simply showing them as a list.

cartographic labeling – on a map with many cities and towns, non-
overlapping labels are needed

gridlines – major and minor axes, weighted towards ‘pleasant’ 
numbering that doesn’t interrupt reading of the data.

5.8.1.2 Physics-based placement

It is common for contemporary information visualization projects to 
use physics rules for movement and placement. These rules are gener-
ally based on a series of masses (data points) and springs (connections 
between them, visible or invisible). A simple Hooke’s Law spring can be 
used to set a target length between two objects and over time these can 
be drawn together. For instance:

attraction – move elements closer based on a criteria

defl ection – push elements away based on some criteria

Both can affect either single elements, or overall groups, e.g.

single element – move item closer to another item based on their 
relatedness

multiple elements – pull all parts of a group together around a 
center point

These rules were discussed at length in the author’s Master’s Thesis 
[Fry, 2000], where a physics based model was used to introduce a kind 
of behavior to a data set for data sets such as web traffi c or the content 
of bodies of text.
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5.8.1.3 Smart graphics, design knowledge

There are limits to the ability of designers, because we cannot singularly 
specify the attributes of hundreds of thousands of elements, tweak-
ing each for perfection. The computational process becomes a way to 
extend the power of the designer to address far larger and more diffi cult 
problems than previously possible.

Instead of specifi c layouts, the practitioner instead designs a set of rules  
(sometimes called metadesign) over the system to determine behaviors 
or to make basic design decisions that fall within a set of criteria.

Another common instantiation is that of knowledge-based design systems 
[Coyne et al, 1990], this research area is often treated separately from 
the other components of the task (everything from data acquisition to 
fi nal color choices), rather than as an integral part of the design process 
itself, where some basic building blocks of rules are provided while 
others are developed by the metadesigner or visual programmer.

Live elements need to be part of the building blocks, but it needs to be 
done in a way that includes a well-chosen set of building blocks (and a 
means to add new ones). The failure of other attempts at this approach 
is that they were considered an entire means to an end, existing in an 
academic vacuum away from the other parts of the process. The com-
ponents need to be made abstract in such a way as they can be applied 
in a straightforward manner, without the fact of their being live distract-
ing from the other essential parts of the design process.
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5.8.1.4 Calibration

Rule based, dynamic systems are notoriously diffi cult to properly cali-
brate. The lure of rule-based systems is in the simplicity of the indi-
vidual rules and their ability to cover complex behaviors. However, these 
rules also become subject to oscillations (as rules confl ict one another) 
or at worse, explosions, where an errant rule might corrupt the state of 
one element, and because of the inter-relationship between elements, 
that corruption is quickly passed to the others in the system, breaking 
its overall state.

As a result a signifi cant portion of the time in using rule-based systems 
is in their proper calibration and testing of many data input scenarios, 
not just in determining the rules themselves, the latter of which may 
require only negligible time when compared to the other steps.
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5.8.2 User Interaction

5.8.2.1 Movement & Viewing Controls

The fi nal step to consider is how to interact with the data. Perhaps the 
representation is dynamic, actively modifying itself to call attention to 
important features. Viewing controls can be used to get an appropriate 
camera angle or warped view of the space of the representation, such as 
using a fi sheye lense to view a large data set in a very compact space.

Sampling controls are interactive dipsticks, allowing the data to be 
sampled at specifi c locations. Other user interface elements such as 
sliders can be used to set proportions or ranges, all the while dynami-
cally updating the view of the data set. 

5.8.2.2 Restraint of choices/options

In software, it’s easy to provide more options to the user. What’s more 
diffi cult, and more important, is fi guring out how to limit the number 
of choices to that which is most relevant to the majority of the tasks 
executed by the majority of users.

When approaching analysis of a complex data set, it’s useful to provide 
a ‘default’ view to the user, so that it’s clear how the functionality of the 
system works. Instead of fi rst displaying a complicated set of knobs and 
sliders that control every aspect of how the data might be queried, an 
initial state makes it easy to move laterally (modifying parameters of the 
basic state) and see quick updates to what’s happening. This way, the 
user can get a feel for the system fi rst, then as specifi c needs arise (How 
do I limit this to situation x? How do I increase the value of y?), they’ll 
be inclined to learn those features one-by-one, rather than learning two 
dozen options up front before they see anything useful.

In short, the design should make an educated guess about what the 
user will want to do, and then make the options for continuing further 
accessible just underneath.
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5.8.2.3 Scale and Zoom

The zipdecode example from chapter two scales to discrete levels—
showing intermediate steps to maintain context. This is specifi cally 
chosen over a sliding zoom control that would allow the user to move 
to any particular magnifi cation they choose. The latter type of control 
has led to a class of “zoomable” uis, but these often present awk-
ward user interaction, a bit like using the zoom on a video camera: 
One wants to zoom at something, but the camera gives a continuous 
forward/backward, which makes it too easy to overshoot, inspiring sea-
sickness in viewers because of a series of rapid zooming, overshooting, 
over-correction, and re-correction. 

By fi rst choosing the relevant levels of zoom in an interface, the zoom 
remains a useful means for moving between viewpoints while maintain-
ing context because of the animation of moving between levels. 

Consider the Powers of Ten video from the offi ce of Charles and Ray 
Eames, narrated and written by Philip & Phylis Morrison [Eames, 1978]. 
While the zoom moves at a continuous speed throughout, the narra-
tion provides a punctuation to the relevant levels in the fi lm, highlight-
ing sections of importance. In addition, for a section where successive 
orders of magnitude have very little occurring, the narration notes this 
fact as an interesting point to be observed (thus making it relevant to 
have those magnitudes visible). 

The latter point helps set criteria for when and why zooming is appro-
priate as well. Is it an interesting fact that for several layers there will be 
nothing happening. Consider a genome browser done with continuous 
zoom. It would move from the chromosome level (approximately 100 
million letters) down to the next relevant section, being individual genes 
(or even groups of genes). A gene is roughly one thousand letters of 
code, meaning that the user will be taken through a 100,000 : 1 zoom. 
This might be interesting for novices learning the relationship between 
chromosomes, genes, and letters of dna, but the interface will likely 
still require discrete levels, so that users don’t become lost on the long 
trip from a the chromosome scale down to the gene scale. 
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5.9 next steps

Some of the more fascinating future directions for this work come from 
what follows the process as it is described.

5.9.1 Iterate

The ability for a designer to rapidly iterate is key to Computational 
Information Design. The projects in this thesis underwent anywhere 
from six to eighty distinct iterations during their development. This 
might include the addition or removal of features, modifi cation of the 
visual design, or improving the interaction. Each step feeds into the 
others, where a change in the ‘refi ne’ step might infl uence how the data 
is acquired.

5.9.2 Using Results to Modify the System

As pointed out by colleague Axel Kilian, a step not covered in this dis-
sertation is the use of a fi nalized project to actually provide a redesign 
for the system that it is representing. For instance, The zipdecode piece 
shows how the postal codes work throughout the u.s., but could also 
be used as a starting point for a tool to redesign the system which 
might soon (ten to twenty years) become saturated and run out of 
numbers. 

5.9.3 Decision Support, Analysis, Prediction

The output of this process might be used for decision support, analysis, 
or prediction. In this thesis, computation is a means for handling the 
repetitive aspects of representation (since machines are best suited 
for such repetitive acts), and for humans to apply their own thinking to 
decipher the meaning of what is produced, a task that, despite years of 
ai research, machines are still very poor at executing.
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5.10 individual practitioners

The process begins with a stream of data, and aims to produce a ‘live’ 
diagram of its meaning. An understanding at one point affects choices 
that are made further along. Ideally, all parts of the process are handled 
by a single individual who has a suffi ciently deep understanding for 
each area that allows them to bring all the necessary knowledge to the 
task. This breadth offers the designer a better approach to understand-
ing data representation and analysis. 

Consider these scenarios for why this becomes a necessity:

• The workings of the mathematical model used to describe the  
 data might affect the visual design, because the model itself  
 may have features, such as the degree of certainty in aspects of  
 the data that should be exposed in the visual design. 

• Parameters of the data model might need to be modifi able   
 via user interaction. This might help clarify its qualities such as  
 whether it acts in a linear or nonlinear fashion. 

• Knowledge of the audience is essential, for knowing what might  
 be appropriate at each step. For instance, a “powers of 10”   
 style of visualization applied to the human genome would likely  
 become tedious for a lab worker, because the animation itself  
 conveys only the well-known structure of the data.

• In other cases, a designer may only become involved near the  
 end of the process, who is tasked with making decisions about  
 superfi cial features like color. This can be problematic because  
 the designer has to 1) understand the system well enough to  
 make appropriate decisions (made diffi cult by usual time   
 constraints of most projects, or simply the interest level of the  
 designer) 2) communicate their intentions to the person who  
 will be implementing them, and then 3) convince that person to  
 follow the design closely, lest an incomplete implementation  
 leave the fi nal solution inadequate. As this author knows from  
 experience in the software industry, this is rarely successful even  
 in cases of the best possible working relationships between   
 developers and designers. 
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6 Tool

Processing is a tool for developing visually-oriented software. It was 
conceived of as a way to introduce programming concepts to designers, 
and design concepts to programmers. While it goes back further, on-
screen digital graphics have in the past twenty years emerged from the 
laboratory and made their way into consumer applications like Macro-
media Flash-based web sites or motion graphics used for fi lm and tele-
vision. Drawing on this history, particularly with regards to interactive 
graphics, it is possible to distill the central themes of programming this 
type of work and thus make it accessible to a wider audience by codify-
ing these ideas and simplifying how they are implemented.

The tool was created in collaboration with Casey Reas, and more 
recently has continued to evolve with the aid of an international com-
munity of developers collaborating over the web. It is not designed 
as, or intended to be, the ultimate tool for Computational Information 
Design, however it provides a means to make the process signifi cantly 
easier, and was used for nearly all of the work presented in this thesis. 

6.1 design by numbers

Our research lab at the mit Media Laboratory has always had a peda-
gogical focus, inspired in by Professor Maeda’s assertion that, with 
regards to the mix of computation and design: 

…I believe that these same principles must be applied much more 
widely, throughout MIT and indeed throughout our university system 
in general. At least at MIT, there has been for many years an aware-
ness of the need for combining the humanities and sciences at the 
curriculum level. Despite the best of intentions, however, the model 
of training is this area remains some form of the humanities wrapped 
around technology, or vice-versa…It is not enough for us simply to 
produce a technologist who is aware of the cultural context of tech-
nology or a humanities major who can talk fl uently about technol-
ogy…What is needed is a true melding of the artistic sensibility with 
that of the engineer in a single person.

maeda, 1998

Why is it called Processing? 

At their core, computers are process-
ing machines. They modify, move, and 
combine symbols at a low level to construct 
higher level representations. Our software 
allows people to control these actions and 
representations through writing their own 
programs. The project also focuses on 
the “process” of creation rather than end 
results. The design of the software supports 
and encourages sketching and the website 
presents fragments of projects and exposes 
the concepts behind fi nished software. 

 From processing.org/faq.html
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This was part of the inspiration for the development of Design By Num-
bers [Maeda, 2000], a simple programming language intended to teach 
the basics of computation to artists and designers.

The strengths of dbn were the simplicity of its distribution, use, and 
syntax. It was available freely on the web, either for downloading or 
could be run from a web page with no installation required. This is a 
notable shift from most programming languages, which require compli-
cated installation and tend to be expensive to purchase.

Typical use of dbn is also far more straightforward than most lan-
guages that involve a cycle of “type, compile, run, debug” than can 
often be cryptic. Code is entered at the right of the window, and run by 
clicking a button that looks like a familiar ‘play’ button from consumer 
electronics.

The dbn system was used for a number of workshops and occasion-
ally for courses at mit and elsewhere. A supplementary ‘courseware’ 
system was developed by Casey Reas that enabled courses to be run 
online, with projects automatically uploaded to the web and visible via a 
presentation page that could be used for critiques in a class. 
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As the primary maintainers of dbn after its inception, we learned a 
great deal from feedback from users on what was diffi cult (algorithms 
and fl ow of programs), what else they wanted (color, a larger screen, 
type, ability to distribute programs over the web), and it provided a 
great deal of insight into the creation of Processing, which began as a 
“next generation” Design By Numbers. 

In Processing we wanted to move to a more robust programming lan-
guage, namely Java, but at the same time, to maintain the simplicity 
of the dbn interface. A system of ‘modes’ was developed, the fi rst for 
drawing static drawings, where the user could simply begin typing code 
without the need to learn functions or other syntax: 

The two additional modes get progressively more diffi cult (but power-
ful), each essentially designed to act as ‘training wheels’ for a person 
learning programming. The fi nal mode is straight Java programming, 
with a handful of small syntax simplifi cations, so the skills of learning 
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Processing are also transferable to Java or even C++ because of their 
similarity. 

6.2 pedagogy

Casey Reas describes Processing as part of the shift from command line 
to GUI fi nally reaching programming instruction:

Graphical user interfaces became mainstream nearly twenty years 
ago, but programming fundamentals are still primarily taught 
through the command line interface. Classes proceed from outputting 
text to the screen, to GUI, to computer graphics (if at all). It is pos-
sible to teach programming in a way that moves graphics and con-
cepts of interaction closer to the surface. The “Hello World” program 
can be replaced with drawing a line, thus shift the focus of computing 
from ASCII to images and engaging people with visual and spatial 
inclinations. 

casey reas [via fi shwick, in production]

For designers, to make Processing more visually engaging from the 
outset, the idea is to fi rst make things happen, and use that to drive 
curiosity into learning how it works, and how to do more. Through this 
alternate approach, our hope is to engage people who might be likely to 
leave a course on Computer Science “fundamentals” after the second 
week as they become overburdened in technique and see no clear path 
to the type of work they’re actually pursuing. 

For programmers, many have simply not developed graphical software 
(outside of simply GUI interfaces). This aspect of programming is 
almost always missing from Computer Science coursework (save for 
courses specifi cally in graphics and animation), and the ‘getting started’ 
portion of requires a few pages of code before something visual can be 
presented on-screen. 

6.3 advanced frameworks

Another ancestor to Processing are the many software toolkits built at 
the Media Laboratory. Its immediate predecessor, called acu, was a C++ 
and OpenGL-based toolkit that was used to build nearly all the screen-
based projects developed in the Aesthetics and Computation Group 
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between 1999 and 2002. Prior to that were similar implementations, 
called acWorlds and acJava developed by the same authors. Even earlier, 
similar projects were underway in the vlw, the earliest known being 
Bob Sabiston’s “BadWindows.”

These frameworks (acu in particular) provided a basic structure for 
interactive graphics research in dynamic typography [Cho, 1999], visual 
programming systems [Schiffman, 2001], audio-visual environments 
[Levin, 2000], and methods for information visualization [Fry, 2000]. At 
the time this work required high-end workstations, but can be repro-
duced today on nearly any recently purchased pc. This shift has blurred 
the lines between the requirements for advanced research, and that of 
sketching and prototyping. 

6.4 sketching & prototyping

The Java programming language enabled web-based distribution of 
mini-applications, called applets, that had nearly the full functionality of 
a desktop-based piece of software. The software compiles to a cross-

bob sabiston

1988 1996 1998 1999

Bad Windows

advanced frameworks

acWindows acWorld
david small

pedagogy

prototyping/sketching

1999

Design By Numbers

Java,Director, Flash

john maeda

tom white
jared schiffman
ben fry
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ben fry
jared schiffman
tom white

2000

Processing

ben fry
casey reas
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platform byte code, which can be run without modifi cation across any 
platform implementing the Java Virtual Machine (i.e. Windows, Mac 
OS, or Linux). 

In addition to the ease of distribution, Java tends to make a better pro-
totyping language than C++, both for its simplifi ed syntax (the language 
designers begin with C++ and removed features that caused common 
problems) and built-in exception handling, meaning that program 
errors will be reported, rather than crashing the program, or worse, 
taking the operating system along with it. These two features lead to 
Java’s usefulness as a basis for the “sketching” environment sought in 
Processing. 

Lacking in Java is the fact that two or three pages of standard code are 
often used across dynamic graphics projects, simply to handle setup 
of the program and handling basic mouse interaction. By making the 
assumption that Processing was intended for interactive graphics appli-
cations, this functionality was built into the base program, so the user 
could begin creating programs, rather than focussing on infrastructure. 

6.5 api

Also lacking in Java were its graphic capabilities. The fi rst most com-
monly used version of Java, version 1.1, had extremely limited graphics 
support. Subsequent versions (1.2, 1.3, and so on) addressed the prob-
lem, but in their attempt to provide an api (application programming 
interface, a set of features or functions) that could do everything, the 
most basic functionality (i.e. drawing a thick line on the screen) would 
now require several lines of code and signifi cant overhead. Worse, these 
later versions of Java have not received the same wide distribution as 
the initial 1.1 in part because of legal battles between Sun (proprietor of 
Java) and Microsoft (accused of violating their contract).

To address graphics for older versions of Java, a new graphics engine 
was created. For the api issue, this graphics model was designed to 
be extremely compact, so as to simplify drawing tasks. Because of the 
more specifi c audience (people building interactive graphics), this api 
could be made more compact, which makes it easier for programmers 
to memorize nearly its entire feature set.

The imaging model also borrowed a concept developed by Tom White 
for the acu framework, where 2d and 3d graphics could be mixed in 
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The entire set of functions 
(the api) for Processing, 
designed to be terse vocabu-
lary that provide only the most 
relevant features used by the 
greatest majority of users. 
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the same drawing surface. Most applications are 2d, but this provides 
a way to mix the two without requiring the developer to learn a 3d 
programming api, many of which tend to be diffi cult and counter-intui-
tive because of the algebra involved. With the added ability to directly 
manipulate pixels, the set of features provides much fl exibility for 
designers and developers. 

6.7 community

Perhaps the greatest strength of Processing is that of its community, 
an international group of users who started as designers or program-
mers and found the language. In the past year, the number of people 
to sign up and download the software has jumped from just over 1,000 
(in June, 2003) to more than 11,000 (as of April, 2004). Thousands 
have signed up and use an online discussion area, where new users 
can get help from more advanced. Users are encouraged to post their 
latest work and share the code for their sketches as part of a worldwide 
studio. 

About two dozen members of this community are actively involved in 
developing new, advanced work using Processing, which drives further 
interest because of the number of people who follow their work. Other 
members are actively involved in developing libraries to be plugged into 
the Processing software, enabling advanced sound synthesis or input 
devices like drawing tablets. What began as a two person project has 
fostered many such smaller projects that are included as part of the 
same support structure.

6.8 elevating practice & critique

An implicit goal of Processing is to remove the mystery from program-
ming. People often consider themselves math-averse and therefore 
incapable of programming, or that programmed works with movement 
and behaviors that seem complicated are works of complicated mas-
tery. While this is no doubt the case for many works, it is a minority, and 
the body of example programs included with Processing, most of them 
roughly a single page of code demonstrate many of the algorithms com-
monly used for motion and interaction. 
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By making the programming concepts accessible to a wider audience 
and removing some of the mystery, it places greater emphasis on the 
creation of meaningful works, rather than technical fl ourish by those “in 
the know.” The shift from technique to critique is a necessity for moving 
the fi eld forward. The ability to evaluate is central to the contention of 
John Maeda’s professors in Japan:

…my teachers in told me that if I were to do what I did, I would 
make a lot of money and be the only one doing it, and that I would 
never know it if I were any good or not.

john maeda [resnick, 2000]

It is our hope that the active community of developers producing and 
sharing works will help elevate the practice, and contribute to making 
that which is technically “easy” equally as easy for anyone, and that 
which is “hard” be learnable.
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7 Additional Examples

This chapter provides an appendix of several projects developed during 
the development of the thesis. They represent the evolution of the pro-
cess behind the work shown in chapters two and four, and helped drive 
the design decisions that went into the development of Processing.

These projects are studies that fall under three categories; genetics, 
software/computation, and general.

7.1 genetics

These projects were developed primarily as studies to pursue aspects of 
genetic data that were either intriguing, as demonstrations of the way 
things work, or as a means to demonstrate issues such as scale.

7.1.1 Handheld Browser Prototype

This handheld browser is a simplifi cation of typical online browsers 
such as those from the ncbi, Ensembl, and ucsc. Focussed in particu-
lar on education, it was created in response to the notion that “A cd-
rom containing the entire human genome can be included with every 
textbook.”  The data on a com-
pact disc is worthless without 
a means to interact with it, so 
the handheld serves as a kind of 
“biologist’s calculator.” Similar 
to an everyday calculator, it can 
perform basic useful functions, 
but is seens as a complement to 
less limited tools that can be run 
from a desktop workstation. 

The design presented here is a 
series of screens that were cre-
ated as an interaction prototype 
to consider how such a device 
would be designed. Much 

ncbi.nlm.nih.gov, ensembl.org, 
and genome.ucsc.edu
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research went into building the backend for such a device, however this 
was left aside in favor of devloping how the product works as opposed 
to the actual implementation. Once the design has been worked out, 
and the backend has been tested for feasability, only software develop-
ment time is needed for its completion. As such, the screens shown 
here are not showing live data.

Shown on the previous page, the series of chromosomes, colored 
according to their cytogenetic banding is shown in the center as a 
method for selecting a chromosome.

At the top, the user can select between multiple genomes, providing a 
way to compare and place the data in context. A search function at the 
bottom provides a method for running a blast-style searches or look-
ing for specifi c search terms.

Selecting a chromsome (the fi fth chromosome is shown here) shows an 
abbreviated set of the genes along the chromosome. Similar to online 
browsers, the listed genes are chosen based on size, number of exons, 
and amount known about each. At right, the result of clicking one of the 
cytogenetic bands reveals its name. Clicking the numbers along the top 
allows the user to jump to another chromosome.

Clicking within a particular area takes the user to a zoomed-in view list-
ing all of the genes inside that region. The chromosome band is moved 
to the lefthand side of the screen.
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Gene names are shown in bold, and a short description is shown to 
their right. At the right, clicking on a description reveals the full text in 
cases where it is too long to fi t on the line. 

Clicking on a gene shows a basic description of the gene’s features. 
Tabs above the content area allow the user to select between different 
data views for that gene, in this case the sequence view, the ontology 
description, or text from the omim database.

Below and to the left, the sequence view of the gene. Above the letters 
of genetic code are its amino acid translation (for exonic regions), and a 
scrollbar at the right allows the user to page through the data.

At the right, a page from the omim database (Online Mendelian Inheri-
tance in Man) is shown, describing the biological & medical signifi -
cance of what’s known about this gene.
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7.1.2 Genome Valence

With several genome projects nearing states of completion, a primary 
use of the data for biologists is to search for a sequence of letters and 
see if it’s found in the genome of another organism. If the sequence is 
found, it is then possible, based on what’s known about the sequence 
as it’s found in the other organism, to guess the function of that 
sequence of letters. 

This piece is a visual representation of the algorithm (called blast) 
most commonly used for genome searches. The genome of an organ-
ism is made up of thousands of genes (34,000 for the human, 20,000 
for the mouse, and 14,000 for the fruitfl y). A gene is made up of a 
sequence of a, c, g and t letters that average one to two thousand let-
ters apiece. In order to handle this amount of information, the blast 
algorithm breaks each sequence of letters into nine letter parts. Every 
unique nine letter set is represented as a point on screen. The points 
are arranged from the center, with the most common sets on the out-
side, the less common towards the middle.
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Across the top, a sequence to be searched 
for is read from an organism. For each set 
of 9 letters found in the sequence, an arc is 
drawn between its point in the space and 
the point representing the next set of nine 
letters.

Meanwhile, the same sequence as above 
can be seen moving through the space as a 
ribbon of text, wrapping itself between the 
points that it connects.

For most nine letter sets, there are three 
points, corresponding to the three organ-
isms and how frequently that set is found 
in each. The three points are connected by 

the three lines on each arc, one for each of the organisms being repre-
sented. The outer ring is usually the human, the inner is the fruitfl y.

Developed specifi cally for this project, the acgt keyboard makes it pos-
sible to input a sequence for a search. The keyboard is intended as part 
joke, part practical means to allow exhibition visitors to be able to hit 
any key (this is the tendency of the public) and have something happen.
The result is another ribbon that weaves through the space to highlight 
the sequence of selected letters.

Genome Valence originated with the Valence project from my master’s 
thesis [Fry, 2000], and was developed as part of the request for its inclu-
sion in the Whitney Biennial in 2002.

It also made a brief appearance in in Ang Lee’s Hulk, in 2003, fi nding 
use in the laboratory of lead actress Jennifer Connelly.
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7.1.3 Chromosome 21

A study in the scale of the human genome, the image below depicts 
thirteen million letters of genetic code from chromosome 21. Similar to 
the image a gene in chapter four, the darker color depicts sequences of 
code (exons) that are known to be used by a cell as the set of instruc-
tions for building a protein. These instructions are interrupted by 
unused pieces of code (introns) which here have a medium coloring. 
The gray areas that might be regulatory region, or simply have no cur-
rently known function. 

The image below was part of the exhibition “How Human” at the Inter-
national Center for Photography in New York City. The size of the instal-
lation was eight feet square, and used a specially designed font that 
occupies only three pixels in either direction, with one pixel of space 
between each letter. The image is printed at 150 pixels per inch, mean-
ing 37.5 letters to the inch in either direction (same resolution as small 
subset of the image at right).

Chromosome 21 is one of the shortest human chromosomes, yet this 
image is only one quarter of the roughly 50 million letters of which it is 
composed. It would take 250 images of this size to depict the genetic 
code in the entire human genome, which is 3.1 billion letters.
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7.1.4 Axonometric Introns & Exons

The human genome is believed to be made up of 
approximately 35,000 genes, each of which have a 
specifi c task in cells of the human body. This image 
depicts two-thirds of those genes, the ones publicly 
catalogued by scientists by the middle of 2002. The 
image at the lower left is a depiction of this data, two 
stories tall (9 feet wide and 18 feet tall) at the Inter-
national Center for Photography in 2003. The output 
from the original version of this software, which was 
for a single chromosome, is shown on the opposite 
page. Because the visualization is software-based, it 
is possible to change the underlying data to the entire 
genome without the need for a complete rewrite. 

Genes known to exist are shown as blue wireframe boxes, with their 
name name and a description. Genes thought to hypothetically exist 
have a dotted blue wireframe. The size of the box is proportional to 
the amount of genetic code (a, c, g, and t letters) that make up the 
gene. The solid blue boxes inside the wireframes depict the propor-
tion of code that is actually used by the gene. The yellow boxes show 

the amount of material between 
genes that has no known function. 

The in-use material is most 
important, but there is far less in 
proportion to the unused data. To 
help even the balance, a semi-3d 
layout is used because the propor-
tions are more easily compared as 
a three dimensional volume rather 
than as a horizontal sequence. 
Eight letters of in-use material can 
be shown with a 2 × 2 × 2 box. A 
set of 27 unused letters are shown 
3 × 3 × 3. The volumes maintain 
the true proportion, but allow a 
simpler side-by-side comparison 
of 2:3 instead of 8:27.
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7.1.5 Haplotype Lines

This project preceded the work in understanding haplotype data found 
in chapter four. These were some of the studies that led up to the fi nal 
solution. 

The earlier representation connects each line of variation to the other 
lines. The result is the heavily intertwined form of hairlines, with the 
variations listed in order of relevance, with more relevant data found 
towards the bottom (the denser sets of letters). While an interesting 
fi rst attempt, the image isn’t particularly useful in its representation. 

The program takes a set of data as input, and can either run as a java 
applet to show the representation in a web browser, or output it to 
postscript format for high-resolution rendering.

The representa-
tion inset on this 
page further con-
denses the sets 
of variations, 
and modifi es line 
weight based on 
how often the 
sequences are 
found adjacent 
one another. 
With this 
representation, 
it is possible 
to see major 
trends. The most 
common varia-
tions are shown 
with thicker 
lines, and are 
sorted top to 
bottom based on 
their thickness. 



144

7.1.6 Strippy

A three dimensional genome browser from spring 2002. It was an 
attempt at a type of “powers of ten” view of the genome, but I didn’t 
like where it was going, and discontinued the project. It also never got 
out of the ugly stage before I dropped it. It was a full browser, however, 
and all the data shown is real (those are actual genes from chromo-
some 10 of the human genome). 

As it happens, a powers of ten style visualization is problematic 
because of the scale of data being considered. Given an overview of the 
chromosomes in the human genome—on average representing 100 
million letters apiece, the next most useful step will be a gene on the 
chromosome, each of which average at around a thousand letters. This 
difference of 100,000 : 1 means that several orders of magnitude must 
be animated through before reaching the next most useful point in the 
visualization. This can be done through a modifi cation in the timing, 
yet even if the issues of lost context can be worked out, it’s not clear 
whether this is even a useful mode of representation in such a case.

This project makes a brief appearance in The Hulk thanks to John 
Underkoffl er, the fi lm’s Science and Technology Advisor. Nick Nolte’s 
character uses it for analysis in the earlier part of the fi lm. John is also 
responsible for the project’s name.
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7.1.7 Redesign of gff2ps

The visualization of genetic sequence data is primarily a representation 
problem. As one of the previously mentioned goals of in information 
design, diagrams should clearly depict the order of importance of the 
data they represent. This helps the viewer know what aspects of the dia-
gram deserve the most attention, and by giving prominence to the most 
important items, those features can be read “at a glance.” 

The application gff2ps [Abril and Guigó, 2000] has been used to 
produce images of the human [Venter et al, 2001], fruitfl y [Adams et 
al, 2000] and mosquito [Holt et al, 2002] genomes for publication. 
The program reads a generic data fi le that lists a series of “features,” 
essentially a short annotation (text or numeric) and the start and stop 
position of where that feature is found. A section of the resulting image 
from a recent publication is shown here:

Genomic sequence data is well suited to such a “track” oriented anno-
tation format, but a tendency exists, when all the data is treated in such 
a generic manner, that the resulting diagram lacks a clear hierarchy of 
visual importance, and each track is generally given equal area on the 
page, because the image is driven more by how the data is stored than 
by considering the relative usefulness of each track to one another—it’s 
a bulleted list of items rather than a clear paragraph of text narrative. 
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The solution is to fi rst consider the order of importance for the data in 
question, and then construct a diagram that places greater emphasis 
on those elements, while diminishing the visual importance of “back-
ground” information like the diagram’s scale, or features of lesser value 
like the database where each gene was found.

A new design, which includes all the features from the diagram above, 
is developed in several steps on the following page. The fi rst step of 
the design begins with just a thick horizontal bar that provides a center 
point for the diagram, which gives the eye a place to “begin” each line 
of sequence when several lines are shown next to one another in a 
publication. Behind that, the nucleotide scale (the number of letters of 
genetic code) is shown using simple gridlines and small pieces of text. 
The scale has been moved to the middle of the diagram, rather than 
the top, also as a way to center the diagram, and because the features 
above and below are not shown on the same scale.

In the second step, a line graph representing snp density is added. A 
line graph is appropriate because when reading this feature, the view-
er’s primary interest is in the relative (rather than an absolute, numeric 
value) or trends (upward or downward) in the data. 
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Step three adds G+C content as a second, solid-colored line graph, for 
the same reasons as snp density. Instances of a related feature, CpG 
islands (often used to predict the location of genes), are shown just 
below, using the same color as the line itself. CpG islands are a small 
tickmark, since their exact location and length is less important than 
simpy seeing groups of them that are clustered together. 

The next step shows the genes, above and below the center track, based 
on whether they’re read by the cell’s machinery in the forward or reverse 
direction (identical to the gff2ps layout). One of three line patterns is 
drawn on top the genes, relating to the “gene authority,” or the data-
base where information about the gene originated. This item of infor-
mation is of extremely low importance, which is why the pattern is so 
low contrast and given such little visual priority. 

The fi nal step adds an ‘expanded’ gene track (again, in the manner of 
the gff2ps diagram) showing a series of fi lled rectangles, each one of 
fi ve colors for the gene’s ontology category. In keeping with a general 
rule of using no more than fi ve colors, the ontology categories have 
been reduced to fi ve, with the hope that even fi ve more general catego-
ries will be more informative than twenty poorly distinguished ones.

It is not presented as the best way to show sequence data, but rather 
provides a useful example of how to address the issue of showing 
many varieties of data together. In addition, this diagram is considered 
as it has appeared on multiple occasions in high-profi le publications. 
To properly re-address this diagram from the ground up, it would be 
necessary to consider more fundamental questions such as “who is the 
audience?” and “in what context will this diagram be used?” Answer-
ing such questions will help better defi ne what data should be included 
on such a diagram, and how much importance should be given to its 
constituent tracks.
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7.2 visually deconstructing code

These projects were created as part of a series shown in the Ars Elec-
tronica 2003 code Exhibition. It consists of short (two days to one 
week) sketch projects that examine ways of looking at software code.

7.2.1 Revisionist

While it’s unsurprising 
that the code in a software 
project changes over time, 
less obvious is the nature 
of how the changes have 
taken place in a broader 
sense. Projects are typically 
structured as a collection 
of fi les that are added, 
removed, and reorganized 
throughout the course of 
development. The contents 
of the individual fi les are 
modifi ed, line by line or in 
large pieces for every fi x 
and feature. 

(Note that the actual prints 
of these projects are 32 
inches wide and 50 inches 
tall, so this small page 
format is a less than ideal 
format, and contradicts 
the goal of seeing all the 
changes at once).

The revisionist software 
generates an image that 
shows the evolution of 
the structure and content 
of the Processing project 
over time, from its initial 
inception through forty 
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releases. The experiment consists of large-format printed pieces to 
depict broader changes over time. One image shows an overall picture 
of the changes, with each column representing one version of the soft-
ware. Lines are drawn between the columns to connect lines that have 
changed. Notable changes can be seen for the removal of one large fi le 
(bottom, middle), and the later addition of a new fi le (top, right), or a 
spike in activity (about two-thirds to the right) coinciding with a push 
for the initial alpha release of the project. The second image shows a 
detail of the image, zoomed 13x to make the text of one portion of a 
column legible. 

While the method of depicting changes between versions of a fi le is not 
new, the representation of many versions in a single instance is less 
conventional. The result is a depiction of the organic process in which 
even the smallest pieces of software code become mature through the 
course of its development, as they are passed between developers, 
revisited for later refi nement, merged, removed, and simplifi ed.
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LC000:
.db $46,$C3,$95,$C3
.db $9A,$C9,$2C,$CB
.db $65,$C4,$9A,$C9
.db $2C,$CB,$65,$C4
.db $BD,$C3,$7C,$C9
.db $9A,$C9,$2C,$CB
.db $3D,$C4,$1C,$C4

LC01C:
.db $00,$01,$02,$03
.db $04,$02,$03,$04
.db $06,$05,$02,$03
.db $07,$08

LC02A:
.db $3C,$40,$46,$52
.db $5C,$64,$70,$7A
.db $76

LC033:
.db $C0,$C0,$C0,$C0
.db $C0,$C0,$C0,$C0
.db $C0,$BD,$C2,$14
.db $C5,$5E,$C5,$F3
.db $C3,$14,$C5,$51
.db $C5,$69,$C8,$20
.db $C8,$A3,$C5,$66
.db $C5,$75,$C8,$5E
.db $C5,$6A,$C5,$55
.db $C4,$A7,$C5,$85
.db $C4,$5E,$C5,$71
.db $C5,$AC,$C5,$14
.db $C5,$51,$C5,$69
.db $C8,$20,$C8,$A3
.db $C5,$62,$C5,$C2
.db $C5,$5E,$C5,$75
.db $C5,$14,$C5,$82
.db $C5,$18,$C5,$69
.db $C8,$86,$C5,$18
.db $C5

LC080:
.db $80,$90,$A0,$48
.db $60,$78,$90,$A8
.db $50,$48,$4C,$30
.db $48,$78,$90,$A8
.db $C0

LC091:
.db $01,$10,$00,$01
.db $10,$00,$01,$10
.db $00,$01,$0C,$00
.db $01,$06,$00,$00
.db $01,$18,$00,$01
.db $16,$00,$01,$0A
.db $00,$01,$14,$00
.db $01,$06,$00,$09
.db $0B,$0D,$0F,$0E
.db $1A,$26,$32,$38
.db $48,$58,$68,$18
.db $3F,$28,$20,$28
.db $38,$0C,$00,$3C
.db $1C,$C0,$7F,$06
.db $02,$0A,$0B,$01
.db $B0

LC0CE:
.db $20,$40,$7F,$03
.db $03,$01,$06,$04
.db $40,$58,$48,$48
.db $78,$70,$80,$B0
.db $37,$3F,$3F,$47
.db $B7,$B9,$B9,$01
.db $01,$41,$04,$0C
.db $14,$1C,$21,$F2
.db $23,$43,$22,$32
.db $22,$8C,$24,$CF

LC0F6:
.db $01,$70,$4B,$D4
.db $17,$4A,$3A,$9E
.db $B4,$96,$C8,$DE
.db $EF,$05,$24,$FA
.db $23,$14,$D6,$E9
.db $FC,$0F,$22,$35
.db $50,$31,$A1

LC111:
.db $03,$D4,$D6,$D6
.db $D7,$D8,$D6,$D5
.db $D5,$D7,$D5,$D5
.db $D5,$D6,$D5,$D7
.db $D6,$D6,$D3,$D3
.db $D3,$D4,$D4,$D4
.db $D4,$D6,$00,$3B
.db $77,$A4,$6B,$CB
.db $CB,$CB,$CC,$00
.db $FC,$FC,$FC,$79
.db $04,$72,$22,$04
.db $21,$6F,$01,$00
.db $00,$60,$9F,$00
.db $17,$04,$DE,$DC
.db $E1,$F8,$FC,$EF
.db $E1,$EE,$C9,$44
.db $C9,$00,$84,$44
.db $F9,$00,$74,$07
.db $23,$78,$04,$1D
.db $F8,$FE,$FE,$29
.db $01,$02,$00,$02
.db $29,$30,$35,$25
.db $35,$22,$26,$1C
.db $22,$22,$22,$26
.db $06,$36,$26,$01
.db $40,$7F,$09,$C7
.db $DB,$00,$E0,$C7
.db $DD,$00

LC17F:
.db $E8,$17,$01,$00
.db $01

LC184:
SEI
CLD
LDA #$00
STA $2000
LDX #$FF
TXS

LC18E:
LDA $2002
AND #$80
BEQ LC18E

LC195:
LDA $2002
AND #$80
BEQ LC195
LDY #$07
LDA $05CE
CMP #$A5
BNE LC1AE
LDA $05CF
CMP #$5A
BNE LC1AE
LDY #$04

LC1AE:
STY $01
LDY #$00
STY $00
TYA

LC1B5:
STA ($00),Y
DEY
BNE LC1B5
DEC $01
BPL LC1B5
LDA $05CE
BNE LC1C6
JSR LC1FD

LC1C6:
STA $4011
LDA #$06
STA $2001
STA $18
JSR LC318
LDA #$90
JSR LC333

LC1D8:
JSR LD326
LDA $48
BMI LC1D8
BEQ LC1D8
JSR LC32F
LDA $48
CMP #$01
BNE LC1F7
JSR LC6C8

LC1ED:
LDA #$FF
STA $48
JSR LC339
JMP LC1D8

LC1F7:
JSR LC739
JMP LC1ED

LC1FD:
LDX #$1E

LC1FF:
LDA LC091,X
STA $0580,X
STA $05A3,X
DEX
BPL LC1FF
LDX #$01
STX $06E0

LC210:
LDA #$40
STA $06E0,X
INX
CPX #$CF
BCC LC210
LDA #$09
STA $06E0,X
LDA #$A5
STA $05CE
LDA #$5A
STA $05CF
LDX #$00
LDA #$0A

LC22D:
STA $05A0,X
STA $05C3,X
LDA #$00
INX
CPX #$03
BCC LC22D
RTS

LC23B:
JSR LC32F
LDA $45
BNE LC24B
LDA $11
ORA #$1A

LC66E:
JSR LC653
LDX #$08

LC673:
STA $00
CLC
ADC $00
BCS LC681
JSR LC64E

LC67D:
DEX
BNE LC673
RTS

LC681:
JSR LC653
JSR LC68A
JMP LC67D

LC68A:
INC $08
BNE LC690
INC $09

LC690:
RTS

LC691:
JSR LC639
LDA #$4E
STA $01

LC698:
DEC $01
BNE LC698
JSR LC62D
LDA $4016
AND #$02
RTS

LC6A5:
LDA #$08
STA $03
LDA #$00
STA $04

LC6AD:
LDA $04
CLC
ADC $04
STA $04
JSR LC691
BNE LC6BE
JSR LC68A
INC $04

LC6BE:
DEC $03
BNE LC6AD
JSR LC639
LDA $04
RTS

LC6C8:
JSR LC716
JSR LC6D1
JSR LC726

LC6D1:
LDA #$20
STA $0A
LDA #$4E
STA $0B

LC6D9:
JSR LC64E
DEC $0A
BNE LC6D9
DEC $0B
BNE LC6D9

LC6E4:
JSR LC653
DEC $05
BNE LC6E4

LC6EB:
JSR LC64E
DEC $06
BNE LC6EB
JSR LC653
LDA #$00
STA $08
STA $09
LDY #$00

LC6FD:
LDA ($0E),Y
JSR LC66E
INY
CPY $0D
BNE LC6FD
LDA $09
PHA
LDA $08
JSR LC66E
PLA
JSR LC66E
JMP LC653

LC716:
LDA #$40
STA $0D
LDA #$60
STA $0E
LDA #$00
STA $0F
LDA #$28
BNE LC734

LC726:
LDA #$00
STA $0D
LDA #$E0
STA $0E
LDA #$05
STA $0F
LDA #$14

LC734:
STA $05
STA $06
RTS

LC739:
JSR LC32F
JSR LC716
JSR LC792
BCC LC751

LC744:
LDA #$19
STA $45

LC748:
JSR LC339

LC74B:
LDA $45
BNE LC74B
BEQ LC739

LC751:
LDX #$00
STX $A8
LDY #$01

LC757:
LDA ($0E),Y
STA $00A3,Y
CMP LC17F,Y
BEQ LC762
INX

LC762:
INY
CPY #$05
BNE LC757
LDA #$07
STA $A0
LDA #$22
STA $A1
LDA #$4F
STA $A2
LDA #$04
STA $A3
LDA #$1A
STA $45
CPX #$00
BNE LC748
JSR LC339

LC782:
LDA $45
BNE LC782
JSR LC32F
JSR LC726
JSR LC792
BCS LC744
RTS

LC792:
LDA $05
STA $00

LC796:
JSR LC691
BNE LC792
DEC $00
BNE LC796
LDA $06
STA $00

LC7A3:
JSR LC691
BEQ LC792
DEC $00
BNE LC7A3
LDA #$00
STA $08
STA $09
JSR LC639
JSR LC639
LDY #$00

LC7BA:
JSR LC6A5
STA ($0E),Y
INY
CPY $0D
BNE LC7BA
LDA $08
STA $0A
LDA $09
STA $0B
JSR LC6A5
CMP $0A
BNE LC7DA
JSR LC6A5
CMP $0B
BEQ LC7DC

LC7DA:
SEC
RTS

LC7DC:
CLC
RTS

LC7DE:

.db $0A,$B0,$02,$E6

.db $00,$20,$EE,$CD

.db $F0,$04,$B5,$94

.db $D0,$25,$A4,$00

.db $8A,$D0,$12,$B5

.db $94,$D9,$D1,$C0

.db $90,$0B,$D0,$16

.db $B5,$90,$D9,$CE

.db $C0,$F0,$13,$B0

.db $0D,$20,$29,$CE

.db $4C,$BD,$CD,$A0

.db $04,$A5,$0A,$F0

.db $02,$A8,$C8,$20

.db $58,$CE,$B5,$98

.db $D0,$5B,$B5,$B0

.db $D0,$10,$B5,$58

.db $05,$52,$D0,$13

.db $B5,$94,$D0,$06

.db $B5,$90,$C9,$A0

.db $90,$09,$A5,$0A

.db $F0,$05,$85,$00

.db $4C,$83,$CE,$B5

.db $B0,$D0,$3A,$BD

.db $68,$03,$D5,$AC

.db $F0,$33,$A0,$05

.db $4C,$C7,$DC,$B5

.db $C0,$C9,$E4,$F0

.db $16,$A9,$03,$D5

.db $A4,$D0,$06,$B5

.db $70,$C9,$03,$B0

.db $0A,$B5,$B8,$C9

.db $38,$B0,$04,$C9

.db $08,$B0,$13,$A9

.db $01,$DD,$6C,$03

.db $F0,$04,$0A,$9D

.db $6C,$03,$8A,$D0

.db $10,$A9,$04,$85

.db $FD,$60,$A9,$01

.db $DD,$6C,$03,$F0

.db $04,$4A,$9D,$6C

.db $03,$60,$E4,$4C

.db $D0,$18,$B9,$BC

.db $C0,$18,$75,$90

.db $95,$90,$90,$02

.db $F6,$94,$8A,$D0

.db $09,$B5,$94,$D9

.db $D1,$C0,$F0,$03

.db $B0,$08,$60,$B5

.db $90,$D9,$CE,$C0

.db $90,$F8,$B9,$CE

.db $C0,$95,$90,$B9

.db $D1,$C0,$95,$94

.db $60,$E4,$4C,$D0

.db $26,$84,$00,$B5

.db $94,$D0,$0B,$B5

.db $B0,$4A,$A8,$B5

.db $90,$D9,$CC,$C0

.db $90,$15,$A4,$00

.db $B5,$90,$38,$F9

.db $C1,$C0,$95,$90

.db $B0,$09,$B5,$94

.db $F0,$03,$D6,$94

.db $60,$95,$90,$60

.db $B5,$26,$D0,$18

.db $B5,$B0,$4A,$A8

.db $B9,$D4,$C0,$95

.db $26,$46,$00,$90

.db $0C,$B5,$AC,$D9

.db $C8,$C0,$F0,$04

.db $90,$12,$D6,$AC

.db $60,$BD,$88,$03

.db $29,$02,$9D,$88

.db $03,$B5,$AC,$D9

.db $CA,$C0,$B0,$03

.db $F6,$AC,$60,$B5

.db $5C,$29,$C0,$F0

.db $17,$B5,$B0,$D0

.db $13,$F6,$AC,$A9

.db $0D,$95,$26,$B5

.db $AC,$C9,$0D,$90

.db $07,$A9,$01,$95

.db $98,$0A,$95,$26

.db $60,$A6,$4A,$86

.db $0F,$B5,$A8,$F0

.db $2C,$B5,$98,$15

.db $9C,$D0,$26,$20

.db $EA,$CF,$B5,$B0

.db $D0,$1A,$20,$CB

.db $CF,$20,$18,$D0

.db $D0,$17,$AD,$A6

.db $03,$F0,$12,$20

.db $00,$D0,$A5,$52

.db $D0,$0B,$20,$0C

.db $CF,$4C,$04,$CF

.db $BD,$68,$03,$95

.db $7C,$A6,$0F,$E8

.db $E0,$04,$90,$C7

.db $60,$B5,$84,$4A

.db $90,$FA,$B5,$70

.db $85,$02,$A0,$02

.db $20,$96,$CF,$90

.db $0F,$20,$DB,$CF

.db $B5,$80,$0A,$90

.db $E7,$B5,$18,$4A

.db $B0,$3B,$90,$1C

.db $B5,$DC,$D0,$58

.db $B5,$84,$4A,$90

.db $53,$B5,$80,$C9

.db $F0,$B0,$4D,$0A

.db $90,$4A,$B5,$19

.db $C9,$E0,$90,$44

.db $C9,$F8,$90,$1D

.db $BC,$60,$03,$88

.db $C0,$01,$30,$1B

.db $20,$88,$CF,$B0

.db $33,$B4,$70,$C8

.db $84,$02,$A0,$00

.db $20,$96,$CF,$B0

.db $27,$A9,$01,$D0

.db $21,$B5,$C0,$C9

.db $E6,$F0,$DD,$BC

.db $60,$03,$C8,$C0

.db $05,$10,$D5,$20

.db $88,$CF,$B0,$10

.db $B4,$70,$88,$84

.db $02,$A0,$00,$20

.db $96,$CF,$B0,$04

.db $A9,$FF,$95,$DC

.db $60,$20,$FF,$E7

.db $C9,$3B,$90,$05

.db $C9,$3E,$B0,$01

.db $60,$38,$60,$B5

.db $80,$18,$79,$D6

.db $C0,$85,$00,$38

.db $F9,$D7,$C0,$85

.db $01,$A4,$4A,$C4

.db $0F,$F0,$1A,$B9

.db $84,$00,$4A,$90

.db $14,$B9,$70,$00

.db $F0,$0F,$C5,$02

.db $D0,$0B,$B9,$80

.db $00,$C5,$00,$B0

.db $04,$C5,$01,$B0

.db $06,$C8,$C0,$04

.db $90,$DD,$18,$60

.db $A0,$80,$B5,$94

.db $D5,$78,$90,$27

.db $D0,$06,$B5,$90

.db $D5,$74,$90,$1F

.db $B5,$94,$F0,$0A

.db $A9,$0F,$D0,$02

.db $A9,$F0,$35,$5C

.db $95,$5C,$60,$20

.db $E3,$CF,$A0,$01

.db $B5,$7C,$F0,$0C

.db $D5,$AC,$F0,$08

.db $90,$01,$C8,$98

.db $15,$5C,$95,$5C

.db $60,$A0,$00,$E0

.db $03,$F0,$0F,$B5

.db $80,$29,$10,$F0

.db $F3,$B5,$1A,$C9

.db $C0,$90,$ED,$D0

.db $01,$C8,$4C,$50

.db $DB,$A9,$00,$85

.db $09,$85,$0D,$8A

.db $0A,$0A,$85,$0A

.db $A0,$03,$84,$0B

.db $A4,$0A,$B9,$C0

.db $03,$C9,$C0,$F0

.db $28,$C9,$C1,$F0

.db $24,$C9,$70,$90

.db $04,$C9,$74,$90

.db $1C,$C9,$48,$90

.db $04,$C9,$4B,$90

.db $60,$E6,$0A,$A4

.db $0B,$88,$10,$DA

.db $A0,$00,$B5,$58

.db $D0,$03,$BC,$68

.db $03,$98,$4C,$A6

.db $D0,$E6,$0D,$A5

.db $0A,$29,$03,$A8

.db $C8,$98,$18,$75

.db $E0,$29,$3F,$85

.db $08,$A9,$40,$85

.db $09,$BC,$60,$03

.db $88,$C0,$01,$30

.db $14,$20,$03,$E8

.db $A4,$07,$C9,$FA

.db $F0,$0B,$20,$8B

.db $CF,$B0,$ED,$20

.db $47,$CF,$4C,$4B

.db $D0,$BC,$60,$03

.db $C8,$C0,$06,$10

.db $BB,$20,$03,$E8

.db $A4,$07,$C9,$E4

.db $F0,$B2,$20,$8B

.db $CF,$B0,$ED,$20

.db $6A,$CF,$4C,$4B

.db $D0,$A9,$09,$95

.db $7C,$A5,$0D,$60

LD0AB:
LDX #$03

LD0AD:
LDY #$05
LDA $B8,X
SEC
SBC #$10
BMI LD0BE

LD0B6:
DEY
BEQ LD0BE
SEC
SBC #$08
BPL LD0B6

LD0BE:
TYA
STA $0360,X
DEX
BPL LD0AD
RTS

LD0C6:

LDA $10
ORA #$04
BCS LD39D
AND #$FB

LD39D:
JSR LC333
PLA
ASL
BCC LD3A7
ORA #$02
INY

LD3A7:
LSR
LSR
TAX

LD3AA:
BCS LD3AD
INY

LD3AD:
LDA ($00),Y
STA $2007
DEX
BNE LD3AA
SEC
TYA
ADC $00
STA $00
LDA #$00
ADC $01
STA $01

LD3C1:
LDX $2002
LDY #$00
LDA ($00),Y
BNE LD387
LDA $2002
LDA #$00
STA $2005
STA $2005
RTS

LD3D6:
.db $3F,$00,$08,$29
.db $27,$22,$30,$29
.db $27,$18,$36,$3F
.db $10,$04,$29,$20
.db $16,$0F,$00,$3F
.db $00,$08,$01,$1A
.db $26,$33,$01,$11
.db $0C,$2C,$3F,$10
.db $04,$01,$20,$16
.db $0F,$00,$3F,$00
.db $08,$02,$26,$1C
.db $30,$02,$29,$19
.db $39,$3F,$10,$04
.db $02,$20,$16,$0F
.db $00,$3F,$00,$08
.db $00,$26,$22,$30
.db $00,$27,$18,$37
.db $3F,$10,$04,$00
.db $20,$16,$0F,$00
.db $3F,$00,$08,$02
.db $19,$22,$30,$02
.db $00,$2D,$10,$3F
.db $10,$04,$02,$20
.db $16,$0F,$00,$3F
.db $08,$08,$29,$22
.db $0F,$20,$29,$22
.db $0F,$16,$3F,$14
.db $0C,$29,$13,$20
.db $0F,$29,$31,$1C
.db $0F,$29,$20,$19
.db $0F,$00,$3F,$00
.db $1C,$02,$0F,$30
.db $21,$02,$15,$02
.db $2A,$02,$3C,$02
.db $30,$02,$30,$02
.db $27,$02,$20,$16
.db $0F,$02,$27,$13
.db $3C,$02,$27,$16
.db $30,$00,$23,$D0
.db $60,$55,$23,$F0
.db $50,$AA,$27,$D0
.db $60,$55,$27,$F0
.db $50,$AA,$20,$00
.db $60,$3F,$20,$20
.db $60,$3E,$20,$40
.db $60,$3F,$20,$60
.db $60,$3E,$20,$80
.db $60,$3F,$24,$00
.db $60,$3F,$24,$20
.db $60,$3E,$24,$40
.db $60,$3F,$24,$60
.db $60,$3E,$24,$80
.db $60,$3F,$20,$A0
.db $60,$30,$20,$C0
.db $60,$FE,$20,$E0
.db $60,$FE,$24,$A0
.db $60,$30,$24,$C0
.db $60,$FE,$24,$E0
.db $60,$FE,$20,$AB
.db $83,$31,$34,$37
.db $20,$B4,$83,$33
.db $36,$39,$20,$AC
.db $48,$32,$20,$EC
.db $48,$38,$20,$CC
.db $08,$17,$12,$17
.db $1D,$0E,$17,$0D
.db $18,$22,$00,$60
.db $3B,$22,$20,$60
.db $3C,$22,$40,$60
.db $3D,$22,$60,$60
.db $3B,$22,$80,$60
.db $3C,$22,$A0,$60
.db $3D,$26,$00,$60
.db $3B,$26,$20,$60
.db $3C,$26,$40,$60
.db $3D,$26,$60,$60
.db $3B,$26,$80,$60
.db $3C,$26,$A0,$60
.db $3D,$23,$00,$7F
.db $FE,$23,$3F,$7F
.db $FE,$23,$7E,$7F
.db $FE,$23,$9D,$63
.db $FE,$27,$00,$7F
.db $FE,$00,$24,$AB
.db $4A,$F2,$24,$AA
.db $01,$96,$24,$B5
.db $01,$97,$24,$CB
.db $03,$93,$94,$95
.db $23,$F1,$06,$AF
.db $AA,$AE,$AB,$AA
.db $AF,$23,$23,$07
.db $B7,$B7,$03,$1B
.db $0D,$B7,$B7,$23
.db $22,$83,$B5,$B0
.db $B2,$23,$2A,$83
.db $B6,$B1,$B4,$23
.db $63,$47,$B3,$23
.db $36,$07,$B7,$B7
.db $1D,$12,$16,$0E
.db $B7,$23,$35,$83
.db $B5,$B0,$B2,$23
.db $3D,$83,$B6,$B1
.db $B4,$23,$76,$47
.db $B3,$23,$2C,$08
.db $4C,$5A,$1D,$0E
.db $16,$19,$7A,$8B
.db $23,$4B,$0A,$4B
.db $4D,$5B,$FC,$FC
.db $FC,$FC,$7B,$4D
.db $8C,$23,$6D,$06
.db $5C,$6A,$6A,$6A
.db $6A,$7C,$23,$8D
.db $06,$5D,$6B,$6C
.db $6B,$6C,$8A,$00
.db $20,$89,$4E,$FC
.db $20,$A9,$0E,$FC
.db $FC,$0E,$21,$0C
.db $12,$1D,$0E,$0B
.db $12,$14,$0E,$FC
.db $FC,$00,$20,$89
.db $4E,$FC,$20,$AA
.db $0C,$0D,$0E,$1C
.db $12,$10,$17,$FC
.db $1D,$1B,$0A,$0C
.db $14,$00,$22,$E7
.db $12,$12,$1D,$F9
.db $1C,$FC,$0A,$FC
.db $17,$0E,$20,$FC
.db $1B,$0E,$0C,$18
.db $1B,$0D,$FA,$00
.db $22,$E5,$56,$FC
.db $22,$EB,$09,$10
.db $0A,$16,$0E,$FC
.db $18,$1F,$0E,$1B
.db $00,$22,$E7,$12
.db $1D,$1B,$22,$FC
.db $1D,$11,$0E,$FC
.db $17,$0E,$21,$1D
.db $FC,$1D,$1B,$0A
.db $0C,$14,$00,$22
.db $E5,$56,$FC,$22
.db $EC,$07,$1D,$12
.db $16,$0E,$FC,$1E
.db $19,$00,$23,$E0
.db $50,$FF,$22,$0D
.db $07,$15,$18,$0A
.db $0D,$12,$17,$10
.db $00,$23,$E0,$50
.db $FF,$22,$0D,$06
.db $1C,$0A,$1F,$12
.db $17,$10,$00,$22
.db $8E,$05,$0E,$1B
.db $1B,$18,$1B,$00
.db $21,$84,$58,$27
.db $23,$44,$58,$27
.db $21,$A4,$CD,$27
.db $21,$BB,$CD,$27
.db $00,$23,$E3,$4B
.db $AA,$23,$F2,$44
.db $FF,$20,$83,$5A
.db $27,$20,$A3,$5A
.db $27,$21,$83,$5A
.db $27,$21,$A3,$5A
.db $27,$20,$C3,$C6
.db $27,$20,$C4,$C6
.db $27,$20,$DB,$C6
.db $27,$20,$DC,$C6
.db $27,$21,$07,$12
.db $98,$9A,$9C,$9E
.db $A0,$A2,$A4,$A6
.db $A8,$98,$9A,$98
.db $AA,$A4,$AC,$AE
.db $98,$9A,$21,$27
.db $12,$99,$9B,$9D
.db $9F,$A1,$A3,$A5
.db $A7,$A9,$99,$9B
.db $99,$AB,$A5,$AD
.db $AF,$99,$9B,$22
.db $0C,$0B,$1C,$0E
.db $15,$0E,$0C,$1D
.db $12,$18,$17,$FC
.db $0A,$22,$4C,$0B

.db $B5,$5C,$29,$C0

.db $F0,$05,$A9,$00

.db $9D,$74,$03,$60

.db $B5,$B0,$F0,$41

.db $C9,$02,$F0,$17

.db $A9,$00,$F0,$0A

.db $B5,$98,$D0,$F8

.db $F6,$94,$D0,$F4

.db $B5,$94,$9D,$84

.db $03,$20,$38,$DD

.db $4C,$1A,$DD,$B5

.db $5C,$4A,$90,$04

.db $A5,$4C,$F0,$1D

.db $B5,$5C,$29,$03

.db $A8,$B9,$68,$D8

.db $9D,$8C,$03,$B5

.db $8C,$85,$01,$20

.db $6F,$DD,$95,$8C

.db $B5,$CC,$D0,$05

.db $A9,$01,$9D,$64

.db $03,$60,$A9,$02

.db $95,$B0,$A9,$0F

.db $9D,$80,$03,$B5

.db $90,$18,$69,$AF

.db $9D,$78,$03,$B5

.db $94,$69,$00,$9D

.db $7C,$03,$BD,$88

.db $03,$C9,$02,$D0

.db $06,$5E,$7C,$03

.db $7E,$78,$03,$8A

.db $D0,$0E,$B5,$94

.db $0A,$0A,$0A,$0A

.db $49,$30,$D0,$02

.db $A9,$08,$85,$FF

.db $60,$BD,$80,$03

.db $7D,$8C,$03,$9D

.db $80,$03,$BD,$84

.db $03,$69,$00,$9D

.db $84,$03,$A5,$01

.db $FD,$7C,$03,$85

.db $01,$A5,$01,$7D

.db $84,$03,$60,$A5

.db $3C,$0D,$E0,$03

.db $F0,$F8,$A5,$3C

.db $C9,$08,$F0,$25

.db $90,$32,$A5,$94

.db $05,$98,$05,$9C

.db $D0,$18,$A5,$58

.db $F0,$06,$A9,$C0

.db $85,$90,$D0,$0E

.db $85,$90,$A2,$01

.db $A5,$B8,$CD,$C4

.db $D8,$D0,$01,$CA

.db $86,$DC,$4C,$DD

.db $CC,$A9,$00,$8D

.db $E0,$03,$A9,$05

.db $8D,$B6,$03,$85

.db $9C,$8D,$74,$03

.db $4C,$13,$CD,$A2

.db $03,$B5,$98,$F0

.db $56,$A0,$04,$8A

.db $D0,$12,$8D,$A9

.db $03,$85,$FC,$A5

.db $4C,$D0,$04,$A9

.db $01,$85,$FD,$A5

.db $1B,$29,$03,$A8

.db $98,$9D,$E4,$03

.db $A5,$4C,$4A,$B0

.db $36,$B5,$94,$D0

.db $29,$B5,$B0,$15

.db $58,$D0,$1F,$95

.db $90,$95,$60,$95

.db $98,$A9,$06,$95

.db $AC,$B5,$80,$18

.db $69,$08,$9D,$90

.db $03,$20,$15,$DA

.db $A9,$02,$9D,$98

.db $03,$4A,$95,$9C

.db $D0,$0D,$A9,$88

.db $95,$90,$B5,$AC

.db $18,$75,$98,$29

.db $0F,$95,$AC,$CA

.db $10,$A3,$60,$A5

.db $24,$C9,$01,$F0

.db $6F,$A4,$4F,$D0

.db $6A,$C9,$60,$B0

.db $0F,$AD,$A9,$03

.db $F0,$0A,$A5,$5C

.db $29,$C0,$F0,$04

.db $A9,$01,$85,$FE

.db $A0,$F0,$A5,$24

.db $C9,$10,$B0,$08

.db $A0,$F2,$C9,$08

.db $B0,$02,$A0,$F4

.db $C9,$72,$D0,$04

.db $A9,$20,$85,$FB

.db $84,$00,$AD,$B4

.db $03,$85,$01,$A0

.db $07,$98,$0A,$0A

.db $AA,$B9,$E7,$D8

.db $9D,$C0,$02,$A5

.db $00,$9D,$C1,$02

.db $A9,$00,$9D,$C2

.db $02,$A5,$01,$9D

.db $C3,$02,$98,$4A

.db $90,$05,$FE,$C1

.db $02,$D0,$09,$A5

.db $01,$38,$E9,$10

.db $85,$01,$90,$03

.db $88,$10,$D2,$A5

.db $34,$F0,$04,$A9

.db $88,$85,$24,$60

.db $A9,$01,$85,$4F

.db $AD,$B4,$03,$38

.db $E5,$60,$8D,$B4

.db $03,$90,$F0,$A9

.db $02,$85,$24,$D0

.db $93,$A2,$03,$B5

.db $84,$4A,$90,$1C

.db $B5,$80,$C9,$30

.db $90,$04,$C9,$40

.db $90,$0D,$BD,$A9

.db $03,$F0,$0D,$A9

.db $40,$85,$FF,$A9

.db $00,$F0,$02,$A9

.db $01,$9D,$A9,$03

.db $CA,$D0,$DC,$60

.db $A2,$00,$AD,$A9

.db $03,$F0,$44,$A5

.db $4C,$4A,$B0,$B7

.db $A2,$02,$A5,$94

.db $85,$00,$A5,$90

.db $85,$01,$46,$00

.db $66,$01,$CA,$10

.db $F9,$A9,$02,$A4

.db $B0,$F0,$02,$A9

.db $04,$AA,$A5,$01

.db $38,$E9,$02,$30

.db $06,$20,$A4,$DF

.db $8A,$D0,$02,$A2

.db $01,$E0,$2F,$90

.db $09,$A2,$2F,$A5

.db $3F,$29,$08,$D0

.db $01,$CA,$A5,$5C

.db $0A,$B0,$04,$8A

.db $09,$80,$AA,$86

.db $FC,$60,$A5,$4F

.db $F0,$1D,$A5,$6B

.db $18,$69,$10,$85

.db $6B,$A5,$6B,$C9

.db $0A,$B0,$11,$A2

.db $68,$20,$7F,$DF

.db $A2,$06,$BD,$D1

.db $03,$9D,$D9,$03

.db $CA,$10,$F7,$60

.db $A5,$6B,$38,$E9

.db $0A,$85,$6B,$E6

.db $6A,$A5,$6A,$C9

.db $64,$90,$DA,$A9

.db $00,$85,$6A,$E6

.db $69,$A5,$69,$C9

.db $3C,$90,$CE,$A9

.db $00,$85,$69,$E6

.db $68,$A5,$68,$C9

.db $09,$90,$C2,$A9

.db $02,$85,$52,$D0

.db $C2,$B5,$00,$48

.db $B5,$01,$48,$B5

.db $02,$20,$A2,$DF

.db $8E,$D6,$03,$8D

.db $D7,$03,$68,$20

.db $A2,$DF,$8E,$D3

.db $03,$8D,$D4,$03

.db $68,$20,$A2,$DF

.db $8D,$D1,$03,$60

.db $A2,$0A,$86,$0F

.db $A2,$00,$E8,$38

.db $E5,$0F,$10,$FA

.db $CA,$65,$0F,$60

.db $A0,$00,$B5,$9C

.db $D0,$19,$B5,$B8

.db $D9,$13,$D9,$30

.db $07,$C8,$C0,$05

.db $30,$F6,$A0,$00

.db $98,$F0,$08,$A9

.db $01,$D5,$A4,$D0

.db $02,$C8,$C8,$98

.db $95,$70,$60,$A2

.db $00,$A0,$01,$B5

.db $A8,$D0,$03,$4C

.db $86,$E0,$B9,$A8

.db $00,$F0,$38,$B5

.db $84,$4A,$90,$F3

.db $B9,$84,$00,$4A

.db $90,$2D,$B5,$70

.db $F0,$E9,$D9,$70

.db $00,$D0,$24,$B5

.db $98,$1D,$E0,$03

.db $D0,$DD,$B9,$98

.db $00,$D0,$79,$B5

.db $B0,$D0,$05,$B9

.db $B0,$00,$F0,$1C

.db $B5,$8C,$D9,$8C

.db $00,$B0,$0B,$20

.db $91,$E0,$D9,$8C

.db $00,$B0,$0D,$4C

.db $7E,$E0,$B9,$8C

.db $00,$20,$91,$E0

.db $D5,$8C,$90,$54

.db $B5,$80,$D9,$80

.db $00,$B0,$14,$20

.db $98,$E0,$D9,$80

.db $00,$B0,$28,$B5

.db $80,$20,$91,$E0

.db $D9,$80,$00,$B0

.db $18,$90,$39,$B9

.db $80,$00,$20,$98

.db $E0,$D5,$80,$B0

.db $12,$B9,$80,$00

.db $20,$91,$E0,$D5

.db $80,$B0,$0C,$90

.db $23,$A9,$FF,$95

.db $98,$D0,$15,$A9

.db $FF,$95,$98,$E0

.db $00,$D0,$08,$C0

.db $0A,$42,$1A,$13

.db $1A,$00,$FF,$1E

.db $86,$FF,$CB,$CD

.db $CC,$CE,$CB,$CB

.db $CB,$22,$64,$62

.db $C0,$22,$74,$63

.db $E0,$21,$83,$FC

.db $C0,$03,$01,$02

.db $02,$00,$05,$05

.db $06,$04,$04,$63

.db $E9,$E3,$E8,$5D

.db $E8,$6A,$E8,$45

.db $E8,$54,$E8,$34

.db $E9,$18,$E8,$8F

.db $EA,$79,$E8,$9D

.db $E8,$EE,$E8,$FF

.db $E8,$56,$E9,$BF

.db $E8,$C6,$E8,$FA

.db $E8,$B7,$E6,$D3

.db $E8,$E7,$E8,$F5

.db $E8,$08,$07,$05

.db $01,$0B,$06,$0A

.db $0E,$03,$04,$0C

.db $0D,$0F,$10,$12

.db $13,$11,$15,$14

.db $00,$09,$18,$20

.db $28,$30,$38,$40

.db $48,$50,$58,$60

.db $68,$70,$78,$80

.db $88,$90,$98,$A0

.db $A8,$B8,$CC,$A2

.db $03,$B5,$60,$F0

.db $1A,$B5,$64,$38

.db $F5,$60,$F0,$06

.db $30,$04,$95,$64

.db $D0,$0D,$18,$69

.db $08,$95,$64,$F6

.db $E0,$B5,$E0,$29

.db $3F,$95,$E0,$A9

.db $00,$95,$D8,$CA

.db $10,$DB,$60,$A2

.db $03,$20,$3B,$E7

.db $CA,$D0,$FA,$B5

.db $60,$18,$75,$C8

.db $95,$C8,$B5,$58

.db $D0,$1C,$B5,$C0

.db $38,$E9,$40,$30

.db $06,$4A,$4A,$C9

.db $16,$90,$01,$60

.db $95,$58,$F6,$58

.db $A9,$00,$95,$C4

.db $B5,$64,$95,$C8

.db $D6,$C8,$B4,$58

.db $B9,$59,$E5,$85

.db $0A,$B9,$6E,$E5

.db $85,$0B,$B4,$C4

.db $B1,$0A,$C9,$FF

.db $F0,$5A,$85,$0F

.db $D5,$C8,$F0,$02

.db $B0,$D5,$C8,$B1

.db $0A,$2C,$03,$E7

.db $D0,$1D,$2C,$FB

.db $E6,$D0,$67,$20

.db $94,$E7,$F6,$C4

.db $F6,$C4,$D0,$CE

.db $0A,$A8,$B9,$B7

.db $E6,$85,$00,$B9

.db $B8,$E6,$85,$01

.db $6C,$00,$00,$B5

.db $B0,$15,$98,$D0

.db $21,$B1,$0A,$29

.db $0F,$85,$00,$B5

.db $A4,$C9,$01,$F0

.db $15,$A5,$00,$95

.db $AC,$B5,$58,$C9

.db $03,$F0,$0B,$B5

.db $AC,$38,$E9,$02

.db $A8,$B9,$AD,$E6

.db $95,$D4,$F6,$C4

.db $F6,$C4,$D0,$92

.db $A9,$00,$95,$58

.db $95,$D4,$B5,$A0

.db $D0,$12,$B5,$A4

.db $C9,$01,$F0,$0C

.db $A9,$00,$95,$BC

.db $B5,$A4,$C9,$02

.db $D0,$02,$F6,$A4

.db $A9,$00,$9D,$6C

.db $03,$60,$29,$0F

.db $95,$CC,$A5,$0F

.db $95,$D0,$10,$CE

LE7FC:
LDY $0360,X
LDA $E0,X
STA $08
JSR LE80D
STY $07
LDY $08
LDA ($03),Y
RTS

LE80D:
LDA LE54E,Y
STA $03
LDA LE554,Y
STA $04
RTS

LE818:
.db $B5,$B0,$D0,$19
.db $B5,$AC,$C9,$07
.db $10,$13,$B5,$94
.db $C9,$03,$B0,$09
.db $C9,$02,$D0,$09
.db $B5,$90,$0A,$90
.db $04,$A9,$FF,$95
.db $98,$60,$A2,$03
.db $B5,$B0,$D0,$05
.db $20,$97,$DC,$95
.db $8C,$CA,$10,$F4
.db $60,$A9,$80,$95
.db $D8,$A9,$05,$20
.db $93,$E8,$4A,$95
.db $BC,$95,$E4,$60
.db $A9,$02,$20,$93
.db $E8,$4A,$4C,$6F
.db $E8,$A9,$06,$20
.db $93,$E8,$20,$4F
.db $E8,$A9,$60,$95
.db $D8,$60,$A9,$01
.db $20,$93,$E8,$85
.db $00,$B5,$E4,$38
.db $E5,$00,$95,$BC
.db $60,$A9,$04,$20
.db $93,$E8,$0A,$20
.db $4F,$E8,$B5,$A0
.db $F0,$08,$B5,$BC
.db $18,$69,$10,$20
.db $4F,$E8,$A9,$40
.db $95,$D8,$60,$95
.db $D4,$95,$B4,$B5
.db $C8,$38,$F5,$D0
.db $60,$B5,$A4,$F0
.db $04,$C9,$01,$F0
.db $19,$A9,$03,$20
.db $93,$E8,$0A,$20
.db $6F,$E8,$B5,$A4
.db $C9,$04,$D0,$0A
.db $20,$06,$DD,$A9
.db $02,$95,$A4,$9D
.db $64,$03,$60,$A9
.db $00,$95,$A4,$95
.db $A0,$60,$A9,$01
.db $95,$A4,$B5,$B8
.db $C9,$20,$B0,$02
.db $F6,$A4,$60,$8A
.db $15,$B0,$0D,$E0
.db $03,$05,$3C,$D0
.db $05,$A9,$08,$8D
.db $B6,$03,$60,$A9
.db $01,$D0,$DC,$B5
.db $B0,$D0,$F7,$4C
.db $FE,$DC,$A9,$02
.db $95,$A0,$4A,$95
.db $D8,$A9,$30,$4C
.db $4F,$E8,$A9,$10
.db $4C,$4F,$E8,$B5
.db $B0,$D0,$23,$B5
.db $A4,$F0,$04,$4A
.db $4A,$90,$1B,$84
.db $01,$B5,$94,$F0
.db $13,$A0,$04,$B5
.db $5C,$0A,$0A,$90
.db $01,$88,$A9,$01
.db $9D,$6C,$03,$C8
.db $C8,$20,$5C,$CE
.db $A4,$01,$60,$A2
.db $03,$B5,$CC,$F0
.db $03,$20,$94,$E7
.db $CA,$10,$F6,$60
.db $B5,$B0,$D0,$FB
.db $A0,$00,$B5,$94
.db $F0,$F5,$C9,$02
.db $B0,$07,$B5,$90
.db $D5,$D8,$B0,$01
.db $C8,$98,$9D,$88
.db $03,$B5,$A0,$C9
.db $02,$F0,$0D,$4C
.db $FA,$DC,$B5,$A4
.db $C9,$01,$D0,$D7
.db $A9,$00,$95,$BC
.db $4C,$06,$DD,$A9
.db $00,$95,$CC,$95
.db $D4,$95,$B4,$60
.db $A2,$03,$B5,$58
.db $C9,$15,$F0,$0B
.db $C9,$14,$F0,$07
.db $B5,$B8,$18,$75
.db $DC,$95,$B8,$A0
.db $03,$B5,$B8,$D9
.db $3D,$E5,$F0,$79
.db $88,$10,$F6,$B5
.db $A4,$F0,$35,$C9
.db $01,$D0,$25,$B5
.db $B8,$C9,$20,$B0
.db $2B,$A9,$04,$95
.db $A4,$B5,$58,$F0
.db $0C,$C9,$12,$F0
.db $08,$C9,$10,$F0
.db $04,$C9,$0D,$D0
.db $36,$A9,$00,$95
.db $BC,$20,$06,$DD
.db $D6,$A4,$D0,$2B
.db $C9,$03,$F0,$08
.db $B5,$B8,$C9,$20
.db $90,$02,$D6,$B8
.db $B5,$B8,$C9,$08
.db $90,$1F,$C9,$3A
.db $90,$15,$A9,$39
.db $95,$B8,$B5,$9C
.db $1D,$E0,$03,$D0
.db $0A,$B5,$DC,$D0



153

7.2.2 Dismap

Programs on modern computers are eventually compiled into machine 
language, a series of basic and direct instructions understood by the 
microprocessor. Programs are fl attened from their hierarchical state 
into a long series of simple mathematical instructions (like multiply 
or add with carry) and interspersed with commands for jumping to 
another location in the program. 

The simpler of these two diagrams shows the program for the “Excite 
Bike” game for the original Nintendo (this console was chosen for its 
simplicity). The blocks of gray text are “data” sections that are used to 
store images or game scenarios. The curved lines connect locations in 
the program where “jumps” occur, which can be a function or a con-
ditional choice made by the software. The more complicated image 
depicts the original “Super Mario Brothers” game. The images were cre-
ated in appreciation of the elegance in the structure of such software, 
not so much as a diagnostic tool for understanding their operation.
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7.2.3 Deconstructulator

This is a deconstructed Nintendo emulator that shows how sprites and 
sprite memory are handled while a game is being played. The intent is 
to show insight for how software and hardware work, given the relatively 
simple example of a minimal architecture from an old game console 
system. 

The emulator is a modifi ed version of the NESCafe emulator written by 
David de Niese. David was kind enough to make the source code of his 
emulator available, which I hacked up a bit to dynamically show aspects 
of how the machine works. 

On the left is the sprite memory on the cartridge, a bank of 8x8 pixel 
tiles that are reassembled to create the images used in the game. Check 
out mariosoup for more information on how they work. The images are 
stored as four colors, but the colors are only specifi ed as the program is 
run. While playing a game, the tiles are colored based on the last color 
set used to draw that image. 

Colors are used in sets of four, of which there are four available for the 
background, and four more assigned to the foreground. The sets are 
shown just below the game image. 

On the right are the 64 sprites (8x8 pixel tiles) currently in memory. 
Beneath each is the four-color set that has been applied to it as it was 
added to the screen. Only 64 can be active on the screen at any given 
time. In the case of Mario, he’s assembled from several small tiles 
which can be seen towards the top.
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7.2.4 Mariosoup

Any piece of executable code is also commingled with data, rang-
ing from simple sentences of text for error messages to entire sets of 
graphics for the application. In older cartridge-based console games, 
the images for each of the small on-screen images (the “sprites”) were 
often stored as raw data embedded after the actual program’s instruc-
tions. This piece examines the unpacking of a Nintendo game cartridge, 
decoding the program as a four-color image, revealing a beautiful soup 
of the thousands of individual elements that make up the game screen. 

The images are a long series of 8x8 pixel “tiles”. Looking at the cartridge 
memory directly (with a black pixel for an “on” bit, and a white pixel for 
an “off”) reveals the sequence of black and white (one bit) 8x8 images. 
Each pair of images is mixed together to produce a two bit (four-color) 
image. The blue represents the fi rst sequence of image data, the red 
layer is the second set of data that is read, and seeing them together 
produces the proper mixed-color image depicting the actual image data.
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7.3 tendril

Tendril is a web browser that creates typographic sculptures from the 
content of web sites. Branches are formed from the text of a web page, 
each link on the page begins another branch for the linked page. 

For instance, the fi rst page of a site is rendered as a column of text. 
links in the text are colored, and when clicked, the text for the linked 
page grows from the location of the link.

The visualization is controlled by trackball input, allowing the user to 
rotate and zoom into and around the structure.

Over time, the result is an enormous branching structure, built purely 
out of the text that is contained in a set of connected web pages, and 
guided by the hand of the user as they choose the direction of links that 
are followed. The project was created as a means to bring form and 
structure to a large set of raw data, streamed live from a server, that is 
undergoing continuous change.
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7.4 shopactivity

This image depicts activity in the mit Media Lab’s shop for two and a 
half weeks. Lines depict activity detected on the security camera. With 
enough activity, the lines coalesce to reveal the image of the people 
working at that time. It was created with two short programs, one 
in Java and another in Perl. While this version used just two weeks, 
it would be possible to run the programs on a larger set of data, or 
instead run on screen as a dynamic display that shows new images as 
they are added. A detail is shown below.

This project was an early example of sketching with software: how to 
explore a set of data by quickly developing a visual image. part of a set 
of experiments to create complex and sophisticated information graph-
ics very rapidly (a matter of hours) through the use of short scripts or 
simple programs. In pursuing such work, a library of useful functionality 
for sketching data visualization has been created, and infl uenced the 
development of Processing.
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The image here is 
rotated to the right 
because of the 
space and layout 
constraints for 
this document.

Actual size of the 
image is 72 × 24 
inches. 
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7.5 radialsize

This sketch was created as a means to understand the relative sizes of 
objects in a hierarchy in a dynamic manner. The example shown on this 
spread shows an alternative view of a user’s fi les, a series of folders and 
documents within folders. 

The image is built from the center, the fi rst inner ring has all the fi les 
and folders within a particular folder specifi ed by the user. Each arc 

wedge is sized according to the size of the fi le, or if a folder, the total 
size of its contents. The three animation steps above show the initial 
traversal of the folder hierarchy, where rings are added as the program 
fi nds new folders and fi les. Placing the mouse over a wedge shows the 
user the name of the fi le or folder it represents. 

The coloring is based on the relative age of the fi les, normalized by their 
standard deviation (see the “Process” chapter). The medium color is for 
fi les that fall within the average ranges for the fi les, brighter colors are 
further outside the spectrum.

Changes to the folders being displayed will cause radialsize to dynami-
cally update itself. For instance, in the example below, a large fi le was 
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removed, so its wedge is slowly removed, an animated transition that 
helps the user to know what has changed. 

The fi les in these examples are mostly of similar dates so there isn’t 
much variety to the color. 

The notion behind this example is providing a bird’s eye view to under-
stand what’s taking up the most room on a disk. Additional features 
would allow the user to click and drag the pie wedge directly to the 
user’s ‘trash’ (or ‘recycle bin’), or compess fi les or entire folders that 
require too much room.

Key to this piece is the idea of a visualization that adapts as the data 
underneath it changes. Creating a diagram of a fi xed data set is quite 
simple, but making them update, and demonstrate (through animation, 
in this case) to the user how they are being updated is often far more 
useful, but has received far less research attention. 

Shown below is an example of a more complicated fi le hierarchy, cover-
ing six gigabytes of data in a total of 3,000 individual folders.
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8 Closing

8.1 the design of information through
 computational means

This thesis presents how several typically disciplines are combined to 
focus on a process for understanding data. Through the combination 
of these fi elds, a single, unique discipline of Computational Informa-
tion Design is formed. A key element of this dissertation is to make the 
process as accessible to as large an audience as possible, both through 
the cursory introductions to the multiple disciplines in the “Process” 
chapter, and online via the programming tool described in chapter six. 
The tool has been developed and tested by more than ten thousand 
users, a proven practical use that demonstrates the usability of the soft-
ware and ability for others to create with it. The examples in the second 
and fourth chapter serve as a means to demonstrate that the process 
is grounded in actual implementation rather than simply a rhetorical 
exercise. 

8.2 applications

A near limitless number of applications exist for data that needs to 
be understood. The most interesting problems are those that seem 
too “complicated” because the amount of data means that it’s nearly 
impossible to get a broad perspective on how it works. 

This might be applied to understanding fi nancial markets or simply 
the tax code. Or companies trying to track purchases, distribution, 
and delivery via rfi d tags – more data collection without a means 
to understand it. Network monitoring remains an open problem: is 
there an intruder? has a machine been hacked or a password stolen? 
In software, questions of how ever more complex software, whether an 
operating system or a large scale project, will be necessary. Looking at 
math and statistical modeling, what does a Hidden Markov Model look 
like? How do we know a neural network is doing what it’s supposed to? 
Security and intelligence services have an obvious data problem, how to 
sift through the million bits of information received daily for legitimate 
threats, without doing so in a manner that infringes on the civil liberties 
of individuals.
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8.3 education

Dissemination is a pragmatic issue of simply making Computational 
Information Design known to a wider audience, through publication, 
producing more examples, and presentation. This is limited however, by 
this author’s output. 

An alternative is to consider how this line of study might be taken up in 
a school setting, where practitioners of the individual fi elds (computer 
science, statistics, graphic design, and information visualization) are 
brought together to teach parts of a curriculum that cover all aspects of 
data handling. 

It is not uncommon for attempts to be made at such cross-disciplinary 
curriculum. Some architecture and design schools have core courses 
that include computer programming alongside more traditional basics 
like drawing. The problem with these programs is that the focus is on 
a well-rounded student, rather than the relevant content of what is 
enabled by the “well-roundedness” to which they aspire. The result is 
that the programming skills (or others deemed irrelevant) are forgotten 
not long after (even before?) completion of the course. 

The issue is understanding the relevance, and practicing the fi eld. 
Perhaps by focussing on the goal of understanding data, the individual 
fi elds might be given more relevance. The focus being on what each 
area offers to the goal, in addition to the mind-stretching that comes 
naturally from learning a topic previously out of one’s reach. Some of 
this author’s least favorite high school courses were in Geometry and 
Linear Algebra, up until graduate school where an intuitive sense of 
what concepts like sine and cosine meant and became everyday com-
ponents of the work seen in this thesis. A previous belief that Computer 
Graphics was about making awful 3d landscapes and virtual reality 
creatures was traded for an understanding of what software-based 
graphics brought to the fi eld of Information Design.

acquire parse mine represent interact

computer science
mathematics, statistics, 

and data mining graphic design
infovis
and hci
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8.4 tools

Another challenge of this work is to improve the tools. One side of this 
challenge is to make simpler tools, making them faster for prototyping 
than writing software code, as well as usable by more people. The other 
side is that they must be more powerful, enabling more sophisticated 
work. Software tools for design (like Illustrator, PageMaker, and Fontog-
rapher) led a revolution in layout, design, and typography by removing 
the burden of rigid printing and typesetting media. 

Ideally, the process of Computational Information Design would be 
accompanied by a still more advanced toolset that supports working 
with issues of data, programming and aesthetics in the same envi-
ronment. The logical ideal for such a tool set would be an authoring 
environment for data representation—combining the elements of a 
data-rich application like Microsoft Excel, with the visual control of 
design software like Adobe Illustrator, and an authoring environment 
like MatLab. The development of this software environment is outside 
the scope of this thesis because a disproportionate amount of time 
would be spent on end-user aspects of software engineering, rather 
than using it to develop relevant projects. Such a toolset would be less 
code oriented for the aspects of visual construction, employing direct 
manipulation tools as in Illustrator. Yet the on-screen instantiations 
of data would, rather than being fi xed points in space, be assigned to 
values from a table or a database. 

A step further would look at how to make the visualization of data more 
like a kind of “kinetic information sculpture,” or a lathe for data. The 
text medium of programming provides great fl exibility but is sensory 
deprivation compared to the traditional tools of artists that employ a 
greater range of senses. What if the design of information were more 
like glass blowing? As interfaces for physical computing become more 
prevalent, what will this mean to how data is handled? Having mapped 
out the fi eld of Computational Information Design, all the interesting 
work lies in helping it mature.
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